Metamath Proof Explorer


Theorem catcxpcclOLD

Description: Obsolete proof of catcxpccl as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses catcxpccl.c C=CatCatU
catcxpccl.b B=BaseC
catcxpccl.o T=X×cY
catcxpccl.u φUWUni
catcxpccl.1 φωU
catcxpccl.x φXB
catcxpccl.y φYB
Assertion catcxpcclOLD φTB

Proof

Step Hyp Ref Expression
1 catcxpccl.c C=CatCatU
2 catcxpccl.b B=BaseC
3 catcxpccl.o T=X×cY
4 catcxpccl.u φUWUni
5 catcxpccl.1 φωU
6 catcxpccl.x φXB
7 catcxpccl.y φYB
8 eqid BaseX=BaseX
9 eqid BaseY=BaseY
10 eqid HomX=HomX
11 eqid HomY=HomY
12 eqid compX=compX
13 eqid compY=compY
14 eqidd φBaseX×BaseY=BaseX×BaseY
15 3 8 9 xpcbas BaseX×BaseY=BaseT
16 eqid HomT=HomT
17 3 15 10 11 16 xpchomfval HomT=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
18 17 a1i φHomT=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
19 eqidd φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
20 3 8 9 10 11 12 13 6 7 14 18 19 xpcval φT=BasendxBaseX×BaseYHomndxHomTcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
21 df-base Base=Slot1
22 4 5 wunndx φndxU
23 21 4 22 wunstr φBasendxU
24 1 2 4 catcbas φB=UCat
25 6 24 eleqtrd φXUCat
26 25 elin1d φXU
27 21 4 26 wunstr φBaseXU
28 7 24 eleqtrd φYUCat
29 28 elin1d φYU
30 21 4 29 wunstr φBaseYU
31 4 27 30 wunxp φBaseX×BaseYU
32 4 23 31 wunop φBasendxBaseX×BaseYU
33 df-hom Hom=Slot14
34 33 4 22 wunstr φHomndxU
35 4 31 31 wunxp φBaseX×BaseY×BaseX×BaseYU
36 33 4 26 wunstr φHomXU
37 4 36 wunrn φranHomXU
38 4 37 wununi φranHomXU
39 33 4 29 wunstr φHomYU
40 4 39 wunrn φranHomYU
41 4 40 wununi φranHomYU
42 4 38 41 wunxp φranHomX×ranHomYU
43 4 42 wunpw φ𝒫ranHomX×ranHomYU
44 ovssunirn 1stuHomX1stvranHomX
45 ovssunirn 2nduHomY2ndvranHomY
46 xpss12 1stuHomX1stvranHomX2nduHomY2ndvranHomY1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
47 44 45 46 mp2an 1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
48 ovex 1stuHomX1stvV
49 ovex 2nduHomY2ndvV
50 48 49 xpex 1stuHomX1stv×2nduHomY2ndvV
51 50 elpw 1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY1stuHomX1stv×2nduHomY2ndvranHomX×ranHomY
52 47 51 mpbir 1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY
53 52 rgen2w uBaseX×BaseYvBaseX×BaseY1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomY
54 eqid uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv=uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv
55 54 fmpo uBaseX×BaseYvBaseX×BaseY1stuHomX1stv×2nduHomY2ndv𝒫ranHomX×ranHomYuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
56 53 55 mpbi uBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
57 56 a1i φuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndv:BaseX×BaseY×BaseX×BaseY𝒫ranHomX×ranHomY
58 4 35 43 57 wunf φuBaseX×BaseY,vBaseX×BaseY1stuHomX1stv×2nduHomY2ndvU
59 17 58 eqeltrid φHomTU
60 4 34 59 wunop φHomndxHomTU
61 df-cco comp=Slot15
62 61 4 22 wunstr φcompndxU
63 4 35 31 wunxp φBaseX×BaseY×BaseX×BaseY×BaseX×BaseYU
64 61 4 26 wunstr φcompXU
65 4 64 wunrn φrancompXU
66 4 65 wununi φrancompXU
67 4 66 wunrn φranrancompXU
68 4 67 wununi φranrancompXU
69 4 68 wunpw φ𝒫ranrancompXU
70 61 4 29 wunstr φcompYU
71 4 70 wunrn φrancompYU
72 4 71 wununi φrancompYU
73 4 72 wunrn φranrancompYU
74 4 73 wununi φranrancompYU
75 4 74 wunpw φ𝒫ranrancompYU
76 4 69 75 wunxp φ𝒫ranrancompX×𝒫ranrancompYU
77 4 59 wunrn φranHomTU
78 4 77 wununi φranHomTU
79 4 78 78 wunxp φranHomT×ranHomTU
80 4 76 79 wunpm φ𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomTU
81 fvex compXV
82 81 rnex rancompXV
83 82 uniex rancompXV
84 83 rnex ranrancompXV
85 84 uniex ranrancompXV
86 85 pwex 𝒫ranrancompXV
87 fvex compYV
88 87 rnex rancompYV
89 88 uniex rancompYV
90 89 rnex ranrancompYV
91 90 uniex ranrancompYV
92 91 pwex 𝒫ranrancompYV
93 86 92 xpex 𝒫ranrancompX×𝒫ranrancompYV
94 fvex HomTV
95 94 rnex ranHomTV
96 95 uniex ranHomTV
97 96 96 xpex ranHomT×ranHomTV
98 ovssunirn 1stg1st1stx1st2ndxcompX1sty1stfran1st1stx1st2ndxcompX1sty
99 ovssunirn 1st1stx1st2ndxcompX1styrancompX
100 rnss 1st1stx1st2ndxcompX1styrancompXran1st1stx1st2ndxcompX1styranrancompX
101 uniss ran1st1stx1st2ndxcompX1styranrancompXran1st1stx1st2ndxcompX1styranrancompX
102 99 100 101 mp2b ran1st1stx1st2ndxcompX1styranrancompX
103 98 102 sstri 1stg1st1stx1st2ndxcompX1sty1stfranrancompX
104 ovex 1stg1st1stx1st2ndxcompX1sty1stfV
105 104 elpw 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX1stg1st1stx1st2ndxcompX1sty1stfranrancompX
106 103 105 mpbir 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX
107 ovssunirn 2ndg2nd1stx2nd2ndxcompY2ndy2ndfran2nd1stx2nd2ndxcompY2ndy
108 ovssunirn 2nd1stx2nd2ndxcompY2ndyrancompY
109 rnss 2nd1stx2nd2ndxcompY2ndyrancompYran2nd1stx2nd2ndxcompY2ndyranrancompY
110 uniss ran2nd1stx2nd2ndxcompY2ndyranrancompYran2nd1stx2nd2ndxcompY2ndyranrancompY
111 108 109 110 mp2b ran2nd1stx2nd2ndxcompY2ndyranrancompY
112 107 111 sstri 2ndg2nd1stx2nd2ndxcompY2ndy2ndfranrancompY
113 ovex 2ndg2nd1stx2nd2ndxcompY2ndy2ndfV
114 113 elpw 2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY2ndg2nd1stx2nd2ndxcompY2ndy2ndfranrancompY
115 112 114 mpbir 2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY
116 opelxpi 1stg1st1stx1st2ndxcompX1sty1stf𝒫ranrancompX2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompY1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
117 106 115 116 mp2an 1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
118 117 rgen2w g2ndxHomTyfHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY
119 eqid g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
120 119 fmpo g2ndxHomTyfHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY
121 118 120 mpbi g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY
122 ovssunirn 2ndxHomTyranHomT
123 fvssunirn HomTxranHomT
124 xpss12 2ndxHomTyranHomTHomTxranHomT2ndxHomTy×HomTxranHomT×ranHomT
125 122 123 124 mp2an 2ndxHomTy×HomTxranHomT×ranHomT
126 elpm2r 𝒫ranrancompX×𝒫ranrancompYVranHomT×ranHomTVg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:2ndxHomTy×HomTx𝒫ranrancompX×𝒫ranrancompY2ndxHomTy×HomTxranHomT×ranHomTg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
127 93 97 121 125 126 mp4an g2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
128 127 rgen2w xBaseX×BaseY×BaseX×BaseYyBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
129 eqid xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf=xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf
130 129 fmpo xBaseX×BaseY×BaseX×BaseYyBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomTxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
131 128 130 mpbi xBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
132 131 a1i φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndf:BaseX×BaseY×BaseX×BaseY×BaseX×BaseY𝒫ranrancompX×𝒫ranrancompY𝑝𝑚ranHomT×ranHomT
133 4 63 80 132 wunf φxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
134 4 62 133 wunop φcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
135 4 32 60 134 wuntp φBasendxBaseX×BaseYHomndxHomTcompndxxBaseX×BaseY×BaseX×BaseY,yBaseX×BaseYg2ndxHomTy,fHomTx1stg1st1stx1st2ndxcompX1sty1stf2ndg2nd1stx2nd2ndxcompY2ndy2ndfU
136 20 135 eqeltrd φTU
137 25 elin2d φXCat
138 28 elin2d φYCat
139 3 137 138 xpccat φTCat
140 136 139 elind φTUCat
141 140 24 eleqtrrd φTB