Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cau3.1 | |
|
Assertion | caubnd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cau3.1 | |
|
2 | 1rp | |
|
3 | breq2 | |
|
4 | 3 | anbi2d | |
5 | 4 | rexralbidv | |
6 | 5 | rspcv | |
7 | 2 6 | ax-mp | |
8 | eluzelz | |
|
9 | 8 1 | eleq2s | |
10 | uzid | |
|
11 | 9 10 | syl | |
12 | simpl | |
|
13 | 12 | ralimi | |
14 | fveq2 | |
|
15 | 14 | eleq1d | |
16 | 15 | rspcva | |
17 | 11 13 16 | syl2an | |
18 | abscl | |
|
19 | 17 18 | syl | |
20 | 1re | |
|
21 | readdcl | |
|
22 | 19 20 21 | sylancl | |
23 | simpr | |
|
24 | simplr | |
|
25 | abs2dif | |
|
26 | 23 24 25 | syl2anc | |
27 | abscl | |
|
28 | 23 27 | syl | |
29 | 24 18 | syl | |
30 | 28 29 | resubcld | |
31 | 23 24 | subcld | |
32 | abscl | |
|
33 | 31 32 | syl | |
34 | lelttr | |
|
35 | 20 34 | mp3an3 | |
36 | 30 33 35 | syl2anc | |
37 | 26 36 | mpand | |
38 | ltsubadd2 | |
|
39 | 20 38 | mp3an3 | |
40 | 28 29 39 | syl2anc | |
41 | 37 40 | sylibd | |
42 | 41 | expimpd | |
43 | 42 | ralimdv | |
44 | 43 | impancom | |
45 | 17 44 | mpd | |
46 | brralrspcev | |
|
47 | 22 45 46 | syl2anc | |
48 | 47 | ex | |
49 | 48 | reximia | |
50 | rexcom | |
|
51 | 49 50 | sylib | |
52 | 7 51 | syl | |