Metamath Proof Explorer


Theorem caubnd2

Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z = M
Assertion caubnd2 x + j Z k j F k F k F j < x y j Z k j F k < y

Proof

Step Hyp Ref Expression
1 cau3.1 Z = M
2 1rp 1 +
3 breq2 x = 1 F k F j < x F k F j < 1
4 3 anbi2d x = 1 F k F k F j < x F k F k F j < 1
5 4 rexralbidv x = 1 j Z k j F k F k F j < x j Z k j F k F k F j < 1
6 5 rspcv 1 + x + j Z k j F k F k F j < x j Z k j F k F k F j < 1
7 2 6 ax-mp x + j Z k j F k F k F j < x j Z k j F k F k F j < 1
8 eluzelz j M j
9 8 1 eleq2s j Z j
10 uzid j j j
11 9 10 syl j Z j j
12 simpl F k F k F j < 1 F k
13 12 ralimi k j F k F k F j < 1 k j F k
14 fveq2 k = j F k = F j
15 14 eleq1d k = j F k F j
16 15 rspcva j j k j F k F j
17 11 13 16 syl2an j Z k j F k F k F j < 1 F j
18 abscl F j F j
19 17 18 syl j Z k j F k F k F j < 1 F j
20 1re 1
21 readdcl F j 1 F j + 1
22 19 20 21 sylancl j Z k j F k F k F j < 1 F j + 1
23 simpr j Z F j F k F k
24 simplr j Z F j F k F j
25 abs2dif F k F j F k F j F k F j
26 23 24 25 syl2anc j Z F j F k F k F j F k F j
27 abscl F k F k
28 23 27 syl j Z F j F k F k
29 24 18 syl j Z F j F k F j
30 28 29 resubcld j Z F j F k F k F j
31 23 24 subcld j Z F j F k F k F j
32 abscl F k F j F k F j
33 31 32 syl j Z F j F k F k F j
34 lelttr F k F j F k F j 1 F k F j F k F j F k F j < 1 F k F j < 1
35 20 34 mp3an3 F k F j F k F j F k F j F k F j F k F j < 1 F k F j < 1
36 30 33 35 syl2anc j Z F j F k F k F j F k F j F k F j < 1 F k F j < 1
37 26 36 mpand j Z F j F k F k F j < 1 F k F j < 1
38 ltsubadd2 F k F j 1 F k F j < 1 F k < F j + 1
39 20 38 mp3an3 F k F j F k F j < 1 F k < F j + 1
40 28 29 39 syl2anc j Z F j F k F k F j < 1 F k < F j + 1
41 37 40 sylibd j Z F j F k F k F j < 1 F k < F j + 1
42 41 expimpd j Z F j F k F k F j < 1 F k < F j + 1
43 42 ralimdv j Z F j k j F k F k F j < 1 k j F k < F j + 1
44 43 impancom j Z k j F k F k F j < 1 F j k j F k < F j + 1
45 17 44 mpd j Z k j F k F k F j < 1 k j F k < F j + 1
46 brralrspcev F j + 1 k j F k < F j + 1 y k j F k < y
47 22 45 46 syl2anc j Z k j F k F k F j < 1 y k j F k < y
48 47 ex j Z k j F k F k F j < 1 y k j F k < y
49 48 reximia j Z k j F k F k F j < 1 j Z y k j F k < y
50 rexcom j Z y k j F k < y y j Z k j F k < y
51 49 50 sylib j Z k j F k F k F j < 1 y j Z k j F k < y
52 7 51 syl x + j Z k j F k F k F j < x y j Z k j F k < y