Metamath Proof Explorer


Theorem caubnd2

Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014)

Ref Expression
Hypothesis cau3.1 Z=M
Assertion caubnd2 x+jZkjFkFkFj<xyjZkjFk<y

Proof

Step Hyp Ref Expression
1 cau3.1 Z=M
2 1rp 1+
3 breq2 x=1FkFj<xFkFj<1
4 3 anbi2d x=1FkFkFj<xFkFkFj<1
5 4 rexralbidv x=1jZkjFkFkFj<xjZkjFkFkFj<1
6 5 rspcv 1+x+jZkjFkFkFj<xjZkjFkFkFj<1
7 2 6 ax-mp x+jZkjFkFkFj<xjZkjFkFkFj<1
8 eluzelz jMj
9 8 1 eleq2s jZj
10 uzid jjj
11 9 10 syl jZjj
12 simpl FkFkFj<1Fk
13 12 ralimi kjFkFkFj<1kjFk
14 fveq2 k=jFk=Fj
15 14 eleq1d k=jFkFj
16 15 rspcva jjkjFkFj
17 11 13 16 syl2an jZkjFkFkFj<1Fj
18 abscl FjFj
19 17 18 syl jZkjFkFkFj<1Fj
20 1re 1
21 readdcl Fj1Fj+1
22 19 20 21 sylancl jZkjFkFkFj<1Fj+1
23 simpr jZFjFkFk
24 simplr jZFjFkFj
25 abs2dif FkFjFkFjFkFj
26 23 24 25 syl2anc jZFjFkFkFjFkFj
27 abscl FkFk
28 23 27 syl jZFjFkFk
29 24 18 syl jZFjFkFj
30 28 29 resubcld jZFjFkFkFj
31 23 24 subcld jZFjFkFkFj
32 abscl FkFjFkFj
33 31 32 syl jZFjFkFkFj
34 lelttr FkFjFkFj1FkFjFkFjFkFj<1FkFj<1
35 20 34 mp3an3 FkFjFkFjFkFjFkFjFkFj<1FkFj<1
36 30 33 35 syl2anc jZFjFkFkFjFkFjFkFj<1FkFj<1
37 26 36 mpand jZFjFkFkFj<1FkFj<1
38 ltsubadd2 FkFj1FkFj<1Fk<Fj+1
39 20 38 mp3an3 FkFjFkFj<1Fk<Fj+1
40 28 29 39 syl2anc jZFjFkFkFj<1Fk<Fj+1
41 37 40 sylibd jZFjFkFkFj<1Fk<Fj+1
42 41 expimpd jZFjFkFkFj<1Fk<Fj+1
43 42 ralimdv jZFjkjFkFkFj<1kjFk<Fj+1
44 43 impancom jZkjFkFkFj<1FjkjFk<Fj+1
45 17 44 mpd jZkjFkFkFj<1kjFk<Fj+1
46 brralrspcev Fj+1kjFk<Fj+1ykjFk<y
47 22 45 46 syl2anc jZkjFkFkFj<1ykjFk<y
48 47 ex jZkjFkFkFj<1ykjFk<y
49 48 reximia jZkjFkFkFj<1jZykjFk<y
50 rexcom jZykjFk<yyjZkjFk<y
51 49 50 sylib jZkjFkFkFj<1yjZkjFk<y
52 7 51 syl x+jZkjFkFkFj<xyjZkjFk<y