Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caucvgbf.1 | |
|
caucvgbf.2 | |
||
caucvgbf.3 | |
||
Assertion | caucvgbf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgbf.1 | |
|
2 | caucvgbf.2 | |
|
3 | caucvgbf.3 | |
|
4 | 3 | caucvgb | |
5 | nfcv | |
|
6 | nfcv | |
|
7 | 1 6 | nffv | |
8 | 7 | nfel1 | |
9 | nfcv | |
|
10 | nfcv | |
|
11 | nfcv | |
|
12 | 1 11 | nffv | |
13 | 7 10 12 | nfov | |
14 | 9 13 | nffv | |
15 | nfcv | |
|
16 | nfcv | |
|
17 | 14 15 16 | nfbr | |
18 | 8 17 | nfan | |
19 | 5 18 | nfralw | |
20 | nfv | |
|
21 | nfcv | |
|
22 | 2 21 | nffv | |
23 | 22 | nfel1 | |
24 | nfcv | |
|
25 | nfcv | |
|
26 | nfcv | |
|
27 | 2 26 | nffv | |
28 | 22 25 27 | nfov | |
29 | 24 28 | nffv | |
30 | nfcv | |
|
31 | nfcv | |
|
32 | 29 30 31 | nfbr | |
33 | 23 32 | nfan | |
34 | nfv | |
|
35 | fveq2 | |
|
36 | 35 | eleq1d | |
37 | 35 | fvoveq1d | |
38 | 37 | breq1d | |
39 | 36 38 | anbi12d | |
40 | 33 34 39 | cbvralw | |
41 | fveq2 | |
|
42 | fveq2 | |
|
43 | 42 | oveq2d | |
44 | 43 | fveq2d | |
45 | 44 | breq1d | |
46 | 45 | anbi2d | |
47 | 41 46 | raleqbidv | |
48 | 40 47 | bitrid | |
49 | 19 20 48 | cbvrexw | |
50 | 49 | ralbii | |
51 | 4 50 | bitrdi | |