Metamath Proof Explorer


Theorem caucvgbf

Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses caucvgbf.1 _jF
caucvgbf.2 _kF
caucvgbf.3 Z=M
Assertion caucvgbf MFVFdomx+jZkjFkFkFj<x

Proof

Step Hyp Ref Expression
1 caucvgbf.1 _jF
2 caucvgbf.2 _kF
3 caucvgbf.3 Z=M
4 3 caucvgb MFVFdomx+iZliFlFlFi<x
5 nfcv _ji
6 nfcv _jl
7 1 6 nffv _jFl
8 7 nfel1 jFl
9 nfcv _jabs
10 nfcv _j
11 nfcv _ji
12 1 11 nffv _jFi
13 7 10 12 nfov _jFlFi
14 9 13 nffv _jFlFi
15 nfcv _j<
16 nfcv _jx
17 14 15 16 nfbr jFlFi<x
18 8 17 nfan jFlFlFi<x
19 5 18 nfralw jliFlFlFi<x
20 nfv ikjFkFkFj<x
21 nfcv _kl
22 2 21 nffv _kFl
23 22 nfel1 kFl
24 nfcv _kabs
25 nfcv _k
26 nfcv _ki
27 2 26 nffv _kFi
28 22 25 27 nfov _kFlFi
29 24 28 nffv _kFlFi
30 nfcv _k<
31 nfcv _kx
32 29 30 31 nfbr kFlFi<x
33 23 32 nfan kFlFlFi<x
34 nfv lFkFkFi<x
35 fveq2 l=kFl=Fk
36 35 eleq1d l=kFlFk
37 35 fvoveq1d l=kFlFi=FkFi
38 37 breq1d l=kFlFi<xFkFi<x
39 36 38 anbi12d l=kFlFlFi<xFkFkFi<x
40 33 34 39 cbvralw liFlFlFi<xkiFkFkFi<x
41 fveq2 i=ji=j
42 fveq2 i=jFi=Fj
43 42 oveq2d i=jFkFi=FkFj
44 43 fveq2d i=jFkFi=FkFj
45 44 breq1d i=jFkFi<xFkFj<x
46 45 anbi2d i=jFkFkFi<xFkFkFj<x
47 41 46 raleqbidv i=jkiFkFkFi<xkjFkFkFj<x
48 40 47 bitrid i=jliFlFlFi<xkjFkFkFj<x
49 19 20 48 cbvrexw iZliFlFlFi<xjZkjFkFkFj<x
50 49 ralbii x+iZliFlFlFi<xx+jZkjFkFkFj<x
51 4 50 bitrdi MFVFdomx+jZkjFkFkFj<x