Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Mario Carneiro, 15-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | caucvgb.1 | |
|
Assertion | caucvgb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgb.1 | |
|
2 | eldm2g | |
|
3 | 2 | ibi | |
4 | df-br | |
|
5 | simpll | |
|
6 | 1rp | |
|
7 | 6 | a1i | |
8 | eqidd | |
|
9 | simpr | |
|
10 | 1 5 7 8 9 | climi | |
11 | simpl | |
|
12 | 11 | ralimi | |
13 | 12 | reximi | |
14 | 10 13 | syl | |
15 | 14 | ex | |
16 | 4 15 | biimtrrid | |
17 | 16 | exlimdv | |
18 | 3 17 | syl5 | |
19 | fveq2 | |
|
20 | 19 | raleqdv | |
21 | 20 | cbvrexvw | |
22 | 21 | a1i | |
23 | simpl | |
|
24 | 23 | ralimi | |
25 | 24 | reximi | |
26 | 25 | ralimi | |
27 | 6 | a1i | |
28 | 22 26 27 | rspcdva | |
29 | 28 | a1i | |
30 | eluzelz | |
|
31 | 30 1 | eleq2s | |
32 | eqid | |
|
33 | 32 | climcau | |
34 | 31 33 | sylan | |
35 | 32 | r19.29uz | |
36 | 35 | ex | |
37 | 36 | ralimdv | |
38 | 34 37 | mpan9 | |
39 | 38 | an32s | |
40 | 39 | adantll | |
41 | simplrr | |
|
42 | fveq2 | |
|
43 | 42 | eleq1d | |
44 | 43 | rspccva | |
45 | 41 44 | sylan | |
46 | simpr | |
|
47 | 46 | ralimi | |
48 | 42 | fvoveq1d | |
49 | 48 | breq1d | |
50 | 49 | cbvralvw | |
51 | 47 50 | sylib | |
52 | 51 | reximi | |
53 | 52 | ralimi | |
54 | 53 | adantl | |
55 | fveq2 | |
|
56 | fveq2 | |
|
57 | 56 | oveq2d | |
58 | 57 | fveq2d | |
59 | 58 | breq1d | |
60 | 55 59 | raleqbidv | |
61 | 60 | cbvrexvw | |
62 | breq2 | |
|
63 | 62 | rexralbidv | |
64 | 61 63 | bitrid | |
65 | 64 | cbvralvw | |
66 | 54 65 | sylib | |
67 | simpll | |
|
68 | 32 45 66 67 | caucvg | |
69 | 68 | adantlll | |
70 | 40 69 | impbida | |
71 | 1 32 | cau4 | |
72 | 71 | ad2antrl | |
73 | 70 72 | bitr4d | |
74 | 73 | rexlimdvaa | |
75 | 18 29 74 | pm5.21ndd | |