Metamath Proof Explorer


Theorem caucvgb

Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of Gleason p. 180. (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis caucvgb.1 Z = M
Assertion caucvgb M F V F dom x + j Z k j F k F k F j < x

Proof

Step Hyp Ref Expression
1 caucvgb.1 Z = M
2 eldm2g F dom F dom m F m
3 2 ibi F dom m F m
4 df-br F m F m
5 simpll M F V F m M
6 1rp 1 +
7 6 a1i M F V F m 1 +
8 eqidd M F V F m k Z F k = F k
9 simpr M F V F m F m
10 1 5 7 8 9 climi M F V F m n Z k n F k F k m < 1
11 simpl F k F k m < 1 F k
12 11 ralimi k n F k F k m < 1 k n F k
13 12 reximi n Z k n F k F k m < 1 n Z k n F k
14 10 13 syl M F V F m n Z k n F k
15 14 ex M F V F m n Z k n F k
16 4 15 syl5bir M F V F m n Z k n F k
17 16 exlimdv M F V m F m n Z k n F k
18 3 17 syl5 M F V F dom n Z k n F k
19 fveq2 j = n j = n
20 19 raleqdv j = n k j F k k n F k
21 20 cbvrexvw j Z k j F k n Z k n F k
22 21 a1i x = 1 j Z k j F k n Z k n F k
23 simpl F k F k F j < x F k
24 23 ralimi k j F k F k F j < x k j F k
25 24 reximi j Z k j F k F k F j < x j Z k j F k
26 25 ralimi x + j Z k j F k F k F j < x x + j Z k j F k
27 6 a1i x + j Z k j F k F k F j < x 1 +
28 22 26 27 rspcdva x + j Z k j F k F k F j < x n Z k n F k
29 28 a1i M F V x + j Z k j F k F k F j < x n Z k n F k
30 eluzelz n M n
31 30 1 eleq2s n Z n
32 eqid n = n
33 32 climcau n F dom x + j n k j F k F j < x
34 31 33 sylan n Z F dom x + j n k j F k F j < x
35 32 r19.29uz k n F k j n k j F k F j < x j n k j F k F k F j < x
36 35 ex k n F k j n k j F k F j < x j n k j F k F k F j < x
37 36 ralimdv k n F k x + j n k j F k F j < x x + j n k j F k F k F j < x
38 34 37 mpan9 n Z F dom k n F k x + j n k j F k F k F j < x
39 38 an32s n Z k n F k F dom x + j n k j F k F k F j < x
40 39 adantll M F V n Z k n F k F dom x + j n k j F k F k F j < x
41 simplrr F V n Z k n F k x + j n k j F k F k F j < x k n F k
42 fveq2 k = m F k = F m
43 42 eleq1d k = m F k F m
44 43 rspccva k n F k m n F m
45 41 44 sylan F V n Z k n F k x + j n k j F k F k F j < x m n F m
46 simpr F k F k F j < x F k F j < x
47 46 ralimi k j F k F k F j < x k j F k F j < x
48 42 fvoveq1d k = m F k F j = F m F j
49 48 breq1d k = m F k F j < x F m F j < x
50 49 cbvralvw k j F k F j < x m j F m F j < x
51 47 50 sylib k j F k F k F j < x m j F m F j < x
52 51 reximi j n k j F k F k F j < x j n m j F m F j < x
53 52 ralimi x + j n k j F k F k F j < x x + j n m j F m F j < x
54 53 adantl F V n Z k n F k x + j n k j F k F k F j < x x + j n m j F m F j < x
55 fveq2 j = i j = i
56 fveq2 j = i F j = F i
57 56 oveq2d j = i F m F j = F m F i
58 57 fveq2d j = i F m F j = F m F i
59 58 breq1d j = i F m F j < x F m F i < x
60 55 59 raleqbidv j = i m j F m F j < x m i F m F i < x
61 60 cbvrexvw j n m j F m F j < x i n m i F m F i < x
62 breq2 x = y F m F i < x F m F i < y
63 62 rexralbidv x = y i n m i F m F i < x i n m i F m F i < y
64 61 63 syl5bb x = y j n m j F m F j < x i n m i F m F i < y
65 64 cbvralvw x + j n m j F m F j < x y + i n m i F m F i < y
66 54 65 sylib F V n Z k n F k x + j n k j F k F k F j < x y + i n m i F m F i < y
67 simpll F V n Z k n F k x + j n k j F k F k F j < x F V
68 32 45 66 67 caucvg F V n Z k n F k x + j n k j F k F k F j < x F dom
69 68 adantlll M F V n Z k n F k x + j n k j F k F k F j < x F dom
70 40 69 impbida M F V n Z k n F k F dom x + j n k j F k F k F j < x
71 1 32 cau4 n Z x + j Z k j F k F k F j < x x + j n k j F k F k F j < x
72 71 ad2antrl M F V n Z k n F k x + j Z k j F k F k F j < x x + j n k j F k F k F j < x
73 70 72 bitr4d M F V n Z k n F k F dom x + j Z k j F k F k F j < x
74 73 rexlimdvaa M F V n Z k n F k F dom x + j Z k j F k F k F j < x
75 18 29 74 pm5.21ndd M F V F dom x + j Z k j F k F k F j < x