| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caucvgb.1 |
|
| 2 |
|
eldm2g |
|
| 3 |
2
|
ibi |
|
| 4 |
|
df-br |
|
| 5 |
|
simpll |
|
| 6 |
|
1rp |
|
| 7 |
6
|
a1i |
|
| 8 |
|
eqidd |
|
| 9 |
|
simpr |
|
| 10 |
1 5 7 8 9
|
climi |
|
| 11 |
|
simpl |
|
| 12 |
11
|
ralimi |
|
| 13 |
12
|
reximi |
|
| 14 |
10 13
|
syl |
|
| 15 |
14
|
ex |
|
| 16 |
4 15
|
biimtrrid |
|
| 17 |
16
|
exlimdv |
|
| 18 |
3 17
|
syl5 |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
raleqdv |
|
| 21 |
20
|
cbvrexvw |
|
| 22 |
21
|
a1i |
|
| 23 |
|
simpl |
|
| 24 |
23
|
ralimi |
|
| 25 |
24
|
reximi |
|
| 26 |
25
|
ralimi |
|
| 27 |
6
|
a1i |
|
| 28 |
22 26 27
|
rspcdva |
|
| 29 |
28
|
a1i |
|
| 30 |
|
eluzelz |
|
| 31 |
30 1
|
eleq2s |
|
| 32 |
|
eqid |
|
| 33 |
32
|
climcau |
|
| 34 |
31 33
|
sylan |
|
| 35 |
32
|
r19.29uz |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
ralimdv |
|
| 38 |
34 37
|
mpan9 |
|
| 39 |
38
|
an32s |
|
| 40 |
39
|
adantll |
|
| 41 |
|
simplrr |
|
| 42 |
|
fveq2 |
|
| 43 |
42
|
eleq1d |
|
| 44 |
43
|
rspccva |
|
| 45 |
41 44
|
sylan |
|
| 46 |
|
simpr |
|
| 47 |
46
|
ralimi |
|
| 48 |
42
|
fvoveq1d |
|
| 49 |
48
|
breq1d |
|
| 50 |
49
|
cbvralvw |
|
| 51 |
47 50
|
sylib |
|
| 52 |
51
|
reximi |
|
| 53 |
52
|
ralimi |
|
| 54 |
53
|
adantl |
|
| 55 |
|
fveq2 |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
oveq2d |
|
| 58 |
57
|
fveq2d |
|
| 59 |
58
|
breq1d |
|
| 60 |
55 59
|
raleqbidv |
|
| 61 |
60
|
cbvrexvw |
|
| 62 |
|
breq2 |
|
| 63 |
62
|
rexralbidv |
|
| 64 |
61 63
|
bitrid |
|
| 65 |
64
|
cbvralvw |
|
| 66 |
54 65
|
sylib |
|
| 67 |
|
simpll |
|
| 68 |
32 45 66 67
|
caucvg |
|
| 69 |
68
|
adantlll |
|
| 70 |
40 69
|
impbida |
|
| 71 |
1 32
|
cau4 |
|
| 72 |
71
|
ad2antrl |
|
| 73 |
70 72
|
bitr4d |
|
| 74 |
73
|
rexlimdvaa |
|
| 75 |
18 29 74
|
pm5.21ndd |
|