Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005) (Revised by AV, 12-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caurcvg.1 | |
|
caurcvg.3 | |
||
caurcvg.4 | |
||
Assertion | caurcvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caurcvg.1 | |
|
2 | caurcvg.3 | |
|
3 | caurcvg.4 | |
|
4 | uzssz | |
|
5 | 1 4 | eqsstri | |
6 | zssre | |
|
7 | 5 6 | sstri | |
8 | 7 | a1i | |
9 | 1rp | |
|
10 | 9 | ne0ii | |
11 | r19.2z | |
|
12 | 10 3 11 | sylancr | |
13 | eluzel2 | |
|
14 | 13 1 | eleq2s | |
15 | 1 | uzsup | |
16 | 14 15 | syl | |
17 | 16 | a1d | |
18 | 17 | rexlimiv | |
19 | 18 | rexlimivw | |
20 | 12 19 | syl | |
21 | 5 | sseli | |
22 | 5 | sseli | |
23 | eluz | |
|
24 | 21 22 23 | syl2an | |
25 | 24 | biimprd | |
26 | 25 | expimpd | |
27 | 26 | imim1d | |
28 | 27 | exp4a | |
29 | 28 | ralimdv2 | |
30 | 29 | reximia | |
31 | 30 | ralimi | |
32 | 3 31 | syl | |
33 | 8 2 20 32 | caurcvgr | |
34 | 14 | a1d | |
35 | 34 | rexlimiv | |
36 | 35 | rexlimivw | |
37 | 12 36 | syl | |
38 | ax-resscn | |
|
39 | fss | |
|
40 | 2 38 39 | sylancl | |
41 | 1 37 40 | rlimclim | |
42 | 33 41 | mpbid | |