Metamath Proof Explorer


Theorem caurcvg

Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses caurcvg.1 Z=M
caurcvg.3 φF:Z
caurcvg.4 φx+mZkmFkFm<x
Assertion caurcvg φFlim supF

Proof

Step Hyp Ref Expression
1 caurcvg.1 Z=M
2 caurcvg.3 φF:Z
3 caurcvg.4 φx+mZkmFkFm<x
4 uzssz M
5 1 4 eqsstri Z
6 zssre
7 5 6 sstri Z
8 7 a1i φZ
9 1rp 1+
10 9 ne0ii +
11 r19.2z +x+mZkmFkFm<xx+mZkmFkFm<x
12 10 3 11 sylancr φx+mZkmFkFm<x
13 eluzel2 mMM
14 13 1 eleq2s mZM
15 1 uzsup MsupZ*<=+∞
16 14 15 syl mZsupZ*<=+∞
17 16 a1d mZkmFkFm<xsupZ*<=+∞
18 17 rexlimiv mZkmFkFm<xsupZ*<=+∞
19 18 rexlimivw x+mZkmFkFm<xsupZ*<=+∞
20 12 19 syl φsupZ*<=+∞
21 5 sseli mZm
22 5 sseli kZk
23 eluz mkkmmk
24 21 22 23 syl2an mZkZkmmk
25 24 biimprd mZkZmkkm
26 25 expimpd mZkZmkkm
27 26 imim1d mZkmFkFm<xkZmkFkFm<x
28 27 exp4a mZkmFkFm<xkZmkFkFm<x
29 28 ralimdv2 mZkmFkFm<xkZmkFkFm<x
30 29 reximia mZkmFkFm<xmZkZmkFkFm<x
31 30 ralimi x+mZkmFkFm<xx+mZkZmkFkFm<x
32 3 31 syl φx+mZkZmkFkFm<x
33 8 2 20 32 caurcvgr φFlim supF
34 14 a1d mZkmFkFm<xM
35 34 rexlimiv mZkmFkFm<xM
36 35 rexlimivw x+mZkmFkFm<xM
37 12 36 syl φM
38 ax-resscn
39 fss F:ZF:Z
40 2 38 39 sylancl φF:Z
41 1 37 40 rlimclim φFlim supFFlim supF
42 33 41 mpbid φFlim supF