Metamath Proof Explorer


Theorem caurcvgr

Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses caurcvgr.1 φA
caurcvgr.2 φF:A
caurcvgr.3 φsupA*<=+∞
caurcvgr.4 φx+jAkAjkFkFj<x
Assertion caurcvgr φFlim supF

Proof

Step Hyp Ref Expression
1 caurcvgr.1 φA
2 caurcvgr.2 φF:A
3 caurcvgr.3 φsupA*<=+∞
4 caurcvgr.4 φx+jAkAjkFkFj<x
5 1rp 1+
6 5 a1i φ1+
7 1 2 3 4 6 caucvgrlem φjAlim supFkAjkFklim supF<31
8 simpl lim supFkAjkFklim supF<31lim supF
9 8 rexlimivw jAlim supFkAjkFklim supF<31lim supF
10 7 9 syl φlim supF
11 10 recnd φlim supF
12 1 adantr φy+A
13 2 adantr φy+F:A
14 3 adantr φy+supA*<=+∞
15 4 adantr φy+x+jAkAjkFkFj<x
16 simpr φy+y+
17 3rp 3+
18 rpdivcl y+3+y3+
19 16 17 18 sylancl φy+y3+
20 12 13 14 15 19 caucvgrlem φy+jAlim supFkAjkFklim supF<3y3
21 simpr lim supFkAjkFklim supF<3y3kAjkFklim supF<3y3
22 21 reximi jAlim supFkAjkFklim supF<3y3jAkAjkFklim supF<3y3
23 20 22 syl φy+jAkAjkFklim supF<3y3
24 ssrexv AjAkAjkFklim supF<3y3jkAjkFklim supF<3y3
25 12 23 24 sylc φy+jkAjkFklim supF<3y3
26 rpcn y+y
27 26 adantl φy+y
28 3cn 3
29 28 a1i φy+3
30 3ne0 30
31 30 a1i φy+30
32 27 29 31 divcan2d φy+3y3=y
33 32 breq2d φy+Fklim supF<3y3Fklim supF<y
34 33 imbi2d φy+jkFklim supF<3y3jkFklim supF<y
35 34 rexralbidv φy+jkAjkFklim supF<3y3jkAjkFklim supF<y
36 25 35 mpbid φy+jkAjkFklim supF<y
37 36 ralrimiva φy+jkAjkFklim supF<y
38 ax-resscn
39 fss F:AF:A
40 2 38 39 sylancl φF:A
41 eqidd φkAFk=Fk
42 40 1 41 rlim φFlim supFlim supFy+jkAjkFklim supF<y
43 11 37 42 mpbir2and φFlim supF