Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016) (Revised by AV, 12-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caurcvgr.1 | |
|
caurcvgr.2 | |
||
caurcvgr.3 | |
||
caurcvgr.4 | |
||
Assertion | caurcvgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caurcvgr.1 | |
|
2 | caurcvgr.2 | |
|
3 | caurcvgr.3 | |
|
4 | caurcvgr.4 | |
|
5 | 1rp | |
|
6 | 5 | a1i | |
7 | 1 2 3 4 6 | caucvgrlem | |
8 | simpl | |
|
9 | 8 | rexlimivw | |
10 | 7 9 | syl | |
11 | 10 | recnd | |
12 | 1 | adantr | |
13 | 2 | adantr | |
14 | 3 | adantr | |
15 | 4 | adantr | |
16 | simpr | |
|
17 | 3rp | |
|
18 | rpdivcl | |
|
19 | 16 17 18 | sylancl | |
20 | 12 13 14 15 19 | caucvgrlem | |
21 | simpr | |
|
22 | 21 | reximi | |
23 | 20 22 | syl | |
24 | ssrexv | |
|
25 | 12 23 24 | sylc | |
26 | rpcn | |
|
27 | 26 | adantl | |
28 | 3cn | |
|
29 | 28 | a1i | |
30 | 3ne0 | |
|
31 | 30 | a1i | |
32 | 27 29 31 | divcan2d | |
33 | 32 | breq2d | |
34 | 33 | imbi2d | |
35 | 34 | rexralbidv | |
36 | 25 35 | mpbid | |
37 | 36 | ralrimiva | |
38 | ax-resscn | |
|
39 | fss | |
|
40 | 2 38 39 | sylancl | |
41 | eqidd | |
|
42 | 40 1 41 | rlim | |
43 | 11 37 42 | mpbir2and | |