Metamath Proof Explorer


Theorem caures

Description: The restriction of a Cauchy sequence to an upper set of integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses caures.1 Z=M
caures.3 φM
caures.4 φDMetX
caures.5 φFX𝑝𝑚
Assertion caures φFCauDFZCauD

Proof

Step Hyp Ref Expression
1 caures.1 Z=M
2 caures.3 φM
3 caures.4 φDMetX
4 caures.5 φFX𝑝𝑚
5 1 uztrn2 jZkjkZ
6 5 adantll φjZkjkZ
7 6 biantrurd φjZkjkdomFkZkdomF
8 dmres domFZ=ZdomF
9 8 elin2 kdomFZkZkdomF
10 7 9 bitr4di φjZkjkdomFkdomFZ
11 10 3anbi1d φjZkjkdomFFkXFkDFj<xkdomFZFkXFkDFj<x
12 11 ralbidva φjZkjkdomFFkXFkDFj<xkjkdomFZFkXFkDFj<x
13 12 rexbidva φjZkjkdomFFkXFkDFj<xjZkjkdomFZFkXFkDFj<x
14 13 ralbidv φx+jZkjkdomFFkXFkDFj<xx+jZkjkdomFZFkXFkDFj<x
15 4 biantrurd φx+jZkjkdomFFkXFkDFj<xFX𝑝𝑚x+jZkjkdomFFkXFkDFj<x
16 elfvdm DMetXXdomMet
17 3 16 syl φXdomMet
18 cnex V
19 ssid XX
20 uzssz M
21 zsscn
22 20 21 sstri M
23 1 22 eqsstri Z
24 pmss12g XXZXdomMetVX𝑝𝑚ZX𝑝𝑚
25 19 23 24 mpanl12 XdomMetVX𝑝𝑚ZX𝑝𝑚
26 17 18 25 sylancl φX𝑝𝑚ZX𝑝𝑚
27 1 fvexi ZV
28 pmresg ZVFX𝑝𝑚FZX𝑝𝑚Z
29 27 4 28 sylancr φFZX𝑝𝑚Z
30 26 29 sseldd φFZX𝑝𝑚
31 30 biantrurd φx+jZkjkdomFZFkXFkDFj<xFZX𝑝𝑚x+jZkjkdomFZFkXFkDFj<x
32 14 15 31 3bitr3d φFX𝑝𝑚x+jZkjkdomFFkXFkDFj<xFZX𝑝𝑚x+jZkjkdomFZFkXFkDFj<x
33 metxmet DMetXD∞MetX
34 3 33 syl φD∞MetX
35 eqidd φkZFk=Fk
36 eqidd φjZFj=Fj
37 1 34 2 35 36 iscau4 φFCauDFX𝑝𝑚x+jZkjkdomFFkXFkDFj<x
38 fvres kZFZk=Fk
39 38 adantl φkZFZk=Fk
40 fvres jZFZj=Fj
41 40 adantl φjZFZj=Fj
42 1 34 2 39 41 iscau4 φFZCauDFZX𝑝𝑚x+jZkjkdomFZFkXFkDFj<x
43 32 37 42 3bitr4d φFCauDFZCauD