Metamath Proof Explorer


Theorem cdleme11g

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
cdleme11.c C=P˙S˙W
cdleme11.d D=P˙T˙W
cdleme11.f F=S˙U˙Q˙P˙S˙W
Assertion cdleme11g KHLWHPAQA¬Q˙WSAPQQ˙F=Q˙C

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 cdleme11.c C=P˙S˙W
8 cdleme11.d D=P˙T˙W
9 cdleme11.f F=S˙U˙Q˙P˙S˙W
10 9 oveq2i Q˙F=Q˙S˙U˙Q˙P˙S˙W
11 simp1l KHLWHPAQA¬Q˙WSAPQKHL
12 simp22l KHLWHPAQA¬Q˙WSAPQQA
13 11 hllatd KHLWHPAQA¬Q˙WSAPQKLat
14 simp23 KHLWHPAQA¬Q˙WSAPQSA
15 eqid BaseK=BaseK
16 15 4 atbase SASBaseK
17 14 16 syl KHLWHPAQA¬Q˙WSAPQSBaseK
18 simp1 KHLWHPAQA¬Q˙WSAPQKHLWH
19 simp21 KHLWHPAQA¬Q˙WSAPQPA
20 1 2 3 4 5 6 15 cdleme0aa KHLWHPAQAUBaseK
21 18 19 12 20 syl3anc KHLWHPAQA¬Q˙WSAPQUBaseK
22 15 2 latjcl KLatSBaseKUBaseKS˙UBaseK
23 13 17 21 22 syl3anc KHLWHPAQA¬Q˙WSAPQS˙UBaseK
24 15 4 atbase QAQBaseK
25 12 24 syl KHLWHPAQA¬Q˙WSAPQQBaseK
26 15 4 atbase PAPBaseK
27 19 26 syl KHLWHPAQA¬Q˙WSAPQPBaseK
28 15 2 latjcl KLatPBaseKSBaseKP˙SBaseK
29 13 27 17 28 syl3anc KHLWHPAQA¬Q˙WSAPQP˙SBaseK
30 simp1r KHLWHPAQA¬Q˙WSAPQWH
31 15 5 lhpbase WHWBaseK
32 30 31 syl KHLWHPAQA¬Q˙WSAPQWBaseK
33 15 3 latmcl KLatP˙SBaseKWBaseKP˙S˙WBaseK
34 13 29 32 33 syl3anc KHLWHPAQA¬Q˙WSAPQP˙S˙WBaseK
35 15 2 latjcl KLatQBaseKP˙S˙WBaseKQ˙P˙S˙WBaseK
36 13 25 34 35 syl3anc KHLWHPAQA¬Q˙WSAPQQ˙P˙S˙WBaseK
37 15 1 2 latlej1 KLatQBaseKP˙S˙WBaseKQ˙Q˙P˙S˙W
38 13 25 34 37 syl3anc KHLWHPAQA¬Q˙WSAPQQ˙Q˙P˙S˙W
39 15 1 2 3 4 atmod1i1 KHLQAS˙UBaseKQ˙P˙S˙WBaseKQ˙Q˙P˙S˙WQ˙S˙U˙Q˙P˙S˙W=Q˙S˙U˙Q˙P˙S˙W
40 11 12 23 36 38 39 syl131anc KHLWHPAQA¬Q˙WSAPQQ˙S˙U˙Q˙P˙S˙W=Q˙S˙U˙Q˙P˙S˙W
41 10 40 eqtrid KHLWHPAQA¬Q˙WSAPQQ˙F=Q˙S˙U˙Q˙P˙S˙W
42 simp22 KHLWHPAQA¬Q˙WSAPQQA¬Q˙W
43 1 2 3 4 5 6 cdleme0cq KHLWHPAQA¬Q˙WQ˙U=P˙Q
44 18 19 42 43 syl12anc KHLWHPAQA¬Q˙WSAPQQ˙U=P˙Q
45 44 oveq2d KHLWHPAQA¬Q˙WSAPQS˙Q˙U=S˙P˙Q
46 15 2 latj12 KLatQBaseKSBaseKUBaseKQ˙S˙U=S˙Q˙U
47 13 25 17 21 46 syl13anc KHLWHPAQA¬Q˙WSAPQQ˙S˙U=S˙Q˙U
48 15 2 latj13 KLatQBaseKPBaseKSBaseKQ˙P˙S=S˙P˙Q
49 13 25 27 17 48 syl13anc KHLWHPAQA¬Q˙WSAPQQ˙P˙S=S˙P˙Q
50 45 47 49 3eqtr4d KHLWHPAQA¬Q˙WSAPQQ˙S˙U=Q˙P˙S
51 50 oveq1d KHLWHPAQA¬Q˙WSAPQQ˙S˙U˙Q˙P˙S˙W=Q˙P˙S˙Q˙P˙S˙W
52 15 1 3 latmle1 KLatP˙SBaseKWBaseKP˙S˙W˙P˙S
53 13 29 32 52 syl3anc KHLWHPAQA¬Q˙WSAPQP˙S˙W˙P˙S
54 15 1 2 latjlej2 KLatP˙S˙WBaseKP˙SBaseKQBaseKP˙S˙W˙P˙SQ˙P˙S˙W˙Q˙P˙S
55 13 34 29 25 54 syl13anc KHLWHPAQA¬Q˙WSAPQP˙S˙W˙P˙SQ˙P˙S˙W˙Q˙P˙S
56 53 55 mpd KHLWHPAQA¬Q˙WSAPQQ˙P˙S˙W˙Q˙P˙S
57 15 2 latjcl KLatQBaseKP˙SBaseKQ˙P˙SBaseK
58 13 25 29 57 syl3anc KHLWHPAQA¬Q˙WSAPQQ˙P˙SBaseK
59 15 1 3 latleeqm2 KLatQ˙P˙S˙WBaseKQ˙P˙SBaseKQ˙P˙S˙W˙Q˙P˙SQ˙P˙S˙Q˙P˙S˙W=Q˙P˙S˙W
60 13 36 58 59 syl3anc KHLWHPAQA¬Q˙WSAPQQ˙P˙S˙W˙Q˙P˙SQ˙P˙S˙Q˙P˙S˙W=Q˙P˙S˙W
61 56 60 mpbid KHLWHPAQA¬Q˙WSAPQQ˙P˙S˙Q˙P˙S˙W=Q˙P˙S˙W
62 7 oveq2i Q˙C=Q˙P˙S˙W
63 61 62 eqtr4di KHLWHPAQA¬Q˙WSAPQQ˙P˙S˙Q˙P˙S˙W=Q˙C
64 41 51 63 3eqtrd KHLWHPAQA¬Q˙WSAPQQ˙F=Q˙C