Metamath Proof Explorer


Theorem cdleme32fva

Description: Part of proof of Lemma D in Crawley p. 113. Value of F at an atom not under W . (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32fva KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/xO=R/sN

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simp2l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRA
16 1 5 atbase RARB
17 15 16 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRB
18 eqid ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
19 13 18 cdleme31so RBR/xO=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
20 17 19 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/xO=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
21 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQKHLWHPA¬P˙WQA¬Q˙W
22 simp3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQPQ
23 simp2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQRA¬R˙W
24 1 2 3 4 5 6 7 8 9 10 11 12 cdleme32snb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WR/sNB
25 21 22 23 24 syl12anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/sNB
26 nfv s¬R˙W
27 nfcsb1v _sR/sN
28 27 nfeq2 sz=R/sN
29 26 28 nfim s¬R˙Wz=R/sN
30 breq1 s=Rs˙WR˙W
31 30 notbid s=R¬s˙W¬R˙W
32 csbeq1a s=RN=R/sN
33 32 eqeq2d s=Rz=Nz=R/sN
34 31 33 imbi12d s=R¬s˙Wz=N¬R˙Wz=R/sN
35 34 ax-gen ss=R¬s˙Wz=N¬R˙Wz=R/sN
36 ceqsralt s¬R˙Wz=R/sNss=R¬s˙Wz=N¬R˙Wz=R/sNRAsAs=R¬s˙Wz=N¬R˙Wz=R/sN
37 29 35 36 mp3an12 RAsAs=R¬s˙Wz=N¬R˙Wz=R/sN
38 37 adantr RA¬R˙WsAs=R¬s˙Wz=N¬R˙Wz=R/sN
39 38 3ad2ant2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsAs=R¬s˙Wz=N¬R˙Wz=R/sN
40 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQKHLWH
41 eqid 0.K=0.K
42 2 4 41 5 6 lhpmat KHLWHRA¬R˙WR˙W=0.K
43 40 23 42 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR˙W=0.K
44 43 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WR˙W=0.K
45 44 oveq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=s˙0.K
46 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQKHL
47 46 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WKHL
48 hlol KHLKOL
49 47 48 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WKOL
50 1 5 atbase sAsB
51 50 ad2antrl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WsB
52 1 3 41 olj01 KOLsBs˙0.K=s
53 49 51 52 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙0.K=s
54 45 53 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=s
55 54 eqeq1d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rs=R
56 44 oveq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WN˙R˙W=N˙0.K
57 simpl11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WKHLWH
58 simpl12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WPA¬P˙W
59 simpl13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WQA¬Q˙W
60 simpr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WsA¬s˙W
61 simpl3 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WPQ
62 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQNB
63 57 58 59 60 61 62 syl122anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WNB
64 1 3 41 olj01 KOLNBN˙0.K=N
65 49 63 64 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WN˙0.K=N
66 56 65 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙WN˙R˙W=N
67 66 eqeq2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Wz=N˙R˙Wz=N
68 55 67 imbi12d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙Ws=Rz=N
69 68 expr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙Ws=Rz=N
70 69 pm5.74d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙W¬s˙Ws=Rz=N
71 impexp ¬s˙Ws˙R˙W=Rz=N˙R˙W¬s˙Ws˙R˙W=Rz=N˙R˙W
72 bi2.04 s=R¬s˙Wz=N¬s˙Ws=Rz=N
73 70 71 72 3bitr4g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙Ws=R¬s˙Wz=N
74 73 ralbidva KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙WsAs=R¬s˙Wz=N
75 simp2r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙W
76 biimt ¬R˙Wz=R/sN¬R˙Wz=R/sN
77 75 76 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQz=R/sN¬R˙Wz=R/sN
78 39 74 77 3bitr4d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQsA¬s˙Ws˙R˙W=Rz=N˙R˙Wz=R/sN
79 78 adantr KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQzBsA¬s˙Ws˙R˙W=Rz=N˙R˙Wz=R/sN
80 25 79 riota5 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W=R/sN
81 20 80 eqtrd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQR/xO=R/sN