Metamath Proof Explorer


Theorem cdleme3h

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙=K
cdleme1.j ˙=joinK
cdleme1.m ˙=meetK
cdleme1.a A=AtomsK
cdleme1.h H=LHypK
cdleme1.u U=P˙Q˙W
cdleme1.f F=R˙U˙Q˙P˙R˙W
cdleme3.3 V=P˙R˙W
Assertion cdleme3h KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFA

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙=K
2 cdleme1.j ˙=joinK
3 cdleme1.m ˙=meetK
4 cdleme1.a A=AtomsK
5 cdleme1.h H=LHypK
6 cdleme1.u U=P˙Q˙W
7 cdleme1.f F=R˙U˙Q˙P˙R˙W
8 cdleme3.3 V=P˙R˙W
9 1 2 3 4 5 6 7 8 cdleme3d F=R˙U˙Q˙V
10 simp1l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHL
11 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA
12 simp1 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKHLWH
13 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA¬P˙W
14 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQA
15 simp3l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPQ
16 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
17 12 13 14 15 16 syl112anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUA
18 eqid BaseK=BaseK
19 18 2 4 hlatjcl KHLRAUAR˙UBaseK
20 10 11 17 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙UBaseK
21 simp3r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬R˙P˙Q
22 11 21 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA¬R˙P˙Q
23 1 2 3 4 5 6 7 8 cdleme3e KHLWHPA¬P˙WQARA¬R˙P˙QVA
24 12 13 14 22 23 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QVA
25 18 2 4 hlatjcl KHLQAVAQ˙VBaseK
26 10 14 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙VBaseK
27 10 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QKLat
28 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QPA
29 18 2 4 hlatjcl KHLPAQAP˙QBaseK
30 10 28 14 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙QBaseK
31 simp1r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWH
32 18 5 lhpbase WHWBaseK
33 31 32 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QWBaseK
34 18 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
35 27 30 33 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙Q˙W˙W
36 6 35 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QU˙W
37 simp23r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬R˙W
38 nbrne2 U˙W¬R˙WUR
39 36 37 38 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QUR
40 39 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRU
41 eqid LinesK=LinesK
42 eqid pmapK=pmapK
43 2 4 41 42 linepmap KLatRAUARUpmapKR˙ULinesK
44 27 11 17 40 43 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QpmapKR˙ULinesK
45 18 2 4 hlatjcl KHLPARAP˙RBaseK
46 10 28 11 45 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙RBaseK
47 18 1 3 latmle2 KLatP˙RBaseKWBaseKP˙R˙W˙W
48 27 46 33 47 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙R˙W˙W
49 8 48 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QV˙W
50 simp22r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬Q˙W
51 nbrne2 V˙W¬Q˙WVQ
52 49 50 51 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QVQ
53 52 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQV
54 2 4 41 42 linepmap KLatQAVAQVpmapKQ˙VLinesK
55 27 14 24 53 54 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QpmapKQ˙VLinesK
56 1 2 4 hlatlej1 KHLRAUAR˙R˙U
57 10 11 17 56 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙R˙U
58 nbrne2 V˙W¬R˙WVR
59 49 37 58 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QVR
60 59 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRV
61 1 2 4 hlatexch2 KHLRAQAVARVR˙Q˙VQ˙R˙V
62 10 11 14 24 60 61 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙Q˙VQ˙R˙V
63 8 oveq2i R˙V=R˙P˙R˙W
64 1 2 4 hlatlej2 KHLPARAR˙P˙R
65 10 28 11 64 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙P˙R
66 18 1 3 latmle1 KLatP˙RBaseKWBaseKP˙R˙W˙P˙R
67 27 46 33 66 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙R˙W˙P˙R
68 18 4 atbase RARBaseK
69 11 68 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRBaseK
70 18 3 latmcl KLatP˙RBaseKWBaseKP˙R˙WBaseK
71 27 46 33 70 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QP˙R˙WBaseK
72 18 1 2 latjle12 KLatRBaseKP˙R˙WBaseKP˙RBaseKR˙P˙RP˙R˙W˙P˙RR˙P˙R˙W˙P˙R
73 27 69 71 46 72 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙P˙RP˙R˙W˙P˙RR˙P˙R˙W˙P˙R
74 65 67 73 mpbi2and KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙P˙R˙W˙P˙R
75 63 74 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙V˙P˙R
76 18 4 atbase QAQBaseK
77 14 76 syl KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQBaseK
78 18 2 4 hlatjcl KHLRAVAR˙VBaseK
79 10 11 24 78 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙VBaseK
80 18 1 lattr KLatQBaseKR˙VBaseKP˙RBaseKQ˙R˙VR˙V˙P˙RQ˙P˙R
81 27 77 79 46 80 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙R˙VR˙V˙P˙RQ˙P˙R
82 75 81 mpan2d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙R˙VQ˙P˙R
83 15 necomd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQP
84 1 2 4 hlatexch1 KHLQARAPAQPQ˙P˙RR˙P˙Q
85 10 14 11 28 83 84 syl131anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQ˙P˙RR˙P˙Q
86 62 82 85 3syld KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙Q˙VR˙P˙Q
87 21 86 mtod KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙Q¬R˙Q˙V
88 nbrne1 R˙R˙U¬R˙Q˙VR˙UQ˙V
89 57 87 88 syl2anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙UQ˙V
90 14 15 jca KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QQAPQ
91 simp23 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QRA¬R˙W
92 eqid 0.K=0.K
93 1 2 3 4 5 6 7 92 cdleme3c KHLWHPA¬P˙WQAPQRA¬R˙WF0.K
94 12 13 90 91 93 syl13anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QF0.K
95 9 94 eqnetrrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙U˙Q˙V0.K
96 18 3 92 4 41 42 2lnat KHLR˙UBaseKQ˙VBaseKpmapKR˙ULinesKpmapKQ˙VLinesKR˙UQ˙VR˙U˙Q˙V0.KR˙U˙Q˙VA
97 10 20 26 44 55 89 95 96 syl322anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QR˙U˙Q˙VA
98 9 97 eqeltrid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFA