Metamath Proof Explorer


Theorem cdlemf2

Description: Part of Lemma F in Crawley p. 116. (Contributed by NM, 12-Apr-2013)

Ref Expression
Hypotheses cdlemf1.l ˙=K
cdlemf1.j ˙=joinK
cdlemf1.a A=AtomsK
cdlemf1.h H=LHypK
cdlemf2.m ˙=meetK
Assertion cdlemf2 KHLWHUAU˙WpAqA¬p˙W¬q˙WU=p˙q˙W

Proof

Step Hyp Ref Expression
1 cdlemf1.l ˙=K
2 cdlemf1.j ˙=joinK
3 cdlemf1.a A=AtomsK
4 cdlemf1.h H=LHypK
5 cdlemf2.m ˙=meetK
6 1 3 4 lhpexnle KHLWHpA¬p˙W
7 6 adantr KHLWHUAU˙WpA¬p˙W
8 1 2 3 4 cdlemf1 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q
9 simpr1r KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q¬p˙W
10 simpr32 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q¬q˙W
11 simpr33 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU˙p˙q
12 simplrr KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU˙W
13 hllat KHLKLat
14 13 ad3antrrr KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qKLat
15 simplrl KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qUA
16 eqid BaseK=BaseK
17 16 3 atbase UAUBaseK
18 15 17 syl KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qUBaseK
19 simplll KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qKHL
20 simpr1l KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qpA
21 simpr2 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qqA
22 16 2 3 hlatjcl KHLpAqAp˙qBaseK
23 19 20 21 22 syl3anc KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qp˙qBaseK
24 16 4 lhpbase WHWBaseK
25 24 ad3antlr KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qWBaseK
26 16 1 5 latlem12 KLatUBaseKp˙qBaseKWBaseKU˙p˙qU˙WU˙p˙q˙W
27 14 18 23 25 26 syl13anc KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU˙p˙qU˙WU˙p˙q˙W
28 11 12 27 mpbi2and KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU˙p˙q˙W
29 hlatl KHLKAtLat
30 29 ad3antrrr KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qKAtLat
31 simpll KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qKHLWH
32 simpr31 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qpq
33 1 2 5 3 4 lhpat KHLWHpA¬p˙WqApqp˙q˙WA
34 31 20 9 21 32 33 syl122anc KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qp˙q˙WA
35 1 3 atcmp KAtLatUAp˙q˙WAU˙p˙q˙WU=p˙q˙W
36 30 15 34 35 syl3anc KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU˙p˙q˙WU=p˙q˙W
37 28 36 mpbid KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qU=p˙q˙W
38 9 10 37 jca31 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q¬p˙W¬q˙WU=p˙q˙W
39 38 3exp2 KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q¬p˙W¬q˙WU=p˙q˙W
40 39 3impia KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙q¬p˙W¬q˙WU=p˙q˙W
41 40 reximdvai KHLWHUAU˙WpA¬p˙WqApq¬q˙WU˙p˙qqA¬p˙W¬q˙WU=p˙q˙W
42 8 41 mpd KHLWHUAU˙WpA¬p˙WqA¬p˙W¬q˙WU=p˙q˙W
43 42 3expia KHLWHUAU˙WpA¬p˙WqA¬p˙W¬q˙WU=p˙q˙W
44 43 expd KHLWHUAU˙WpA¬p˙WqA¬p˙W¬q˙WU=p˙q˙W
45 44 reximdvai KHLWHUAU˙WpA¬p˙WpAqA¬p˙W¬q˙WU=p˙q˙W
46 7 45 mpd KHLWHUAU˙WpAqA¬p˙W¬q˙WU=p˙q˙W