Metamath Proof Explorer


Theorem cdlemg10

Description: TODO: FIX COMMENT. (Contributed by NM, 4-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
cdlemg10.r R=trLKW
Assertion cdlemg10 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 cdlemg10.r R=trLKW
8 eqid BaseK=BaseK
9 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QKHL
10 9 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QKLat
11 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QPA
12 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QKHLWH
13 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFT
14 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGT
15 1 4 5 6 ltrnat KHLWHGTPAGPA
16 12 14 11 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGPA
17 1 4 5 6 ltrnat KHLWHFTGPAFGPA
18 12 13 16 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFGPA
19 8 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
20 9 11 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGPBaseK
21 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QQA
22 1 4 5 6 ltrnat KHLWHGTQAGQA
23 12 14 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QGQA
24 1 4 5 6 ltrnat KHLWHFTGQAFGQA
25 12 13 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QFGQA
26 8 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
27 9 21 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QQ˙FGQBaseK
28 8 3 latmcl KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQBaseK
29 10 20 27 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQBaseK
30 8 5 6 7 trlcl KHLWHFTRFBaseK
31 12 13 30 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRFBaseK
32 8 5 6 7 trlcl KHLWHGTRGBaseK
33 12 14 32 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRGBaseK
34 8 2 latjcl KLatRFBaseKRGBaseKRF˙RGBaseK
35 10 31 33 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙RGBaseK
36 simp11r KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QWH
37 8 5 lhpbase WHWBaseK
38 36 37 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QWBaseK
39 1 2 3 4 5 6 7 cdlemg10a KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙RF˙RG
40 1 5 6 7 trlle KHLWHFTRF˙W
41 12 13 40 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙W
42 1 5 6 7 trlle KHLWHGTRG˙W
43 12 14 42 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRG˙W
44 8 1 2 latjle12 KLatRFBaseKRGBaseKWBaseKRF˙WRG˙WRF˙RG˙W
45 10 31 33 38 44 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙WRG˙WRF˙RG˙W
46 41 43 45 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QRF˙RG˙W
47 8 1 10 29 35 38 39 46 lattrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙W