Metamath Proof Explorer


Theorem cdlemg11b

Description: TODO: FIX COMMENT. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
cdlemg10.r R=trLKW
Assertion cdlemg11b KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙QGP˙GQ

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 cdlemg10.r R=trLKW
8 simp33 KHLWHPA¬P˙WQAGTPQ¬RG˙P˙Q¬RG˙P˙Q
9 simpl1 KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQKHLWH
10 simpl31 KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQGT
11 simpl2l KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQPA¬P˙W
12 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
13 9 10 11 12 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQRG=P˙GP˙W
14 eqid BaseK=BaseK
15 simpl1l KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQKHL
16 15 hllatd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQKLat
17 simp2ll KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QPA
18 17 adantr KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQPA
19 14 4 atbase PAPBaseK
20 18 19 syl KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQPBaseK
21 14 5 6 ltrncl KHLWHGTPBaseKGPBaseK
22 9 10 20 21 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQGPBaseK
23 14 2 latjcl KLatPBaseKGPBaseKP˙GPBaseK
24 16 20 22 23 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙GPBaseK
25 simpl1r KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQWH
26 14 5 lhpbase WHWBaseK
27 25 26 syl KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQWBaseK
28 14 3 latmcl KLatP˙GPBaseKWBaseKP˙GP˙WBaseK
29 16 24 27 28 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙GP˙WBaseK
30 simpl2r KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQQA
31 14 4 atbase QAQBaseK
32 30 31 syl KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQQBaseK
33 14 2 latjcl KLatPBaseKQBaseKP˙QBaseK
34 16 20 32 33 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙QBaseK
35 14 1 3 latmle1 KLatP˙GPBaseKWBaseKP˙GP˙W˙P˙GP
36 16 24 27 35 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙GP˙W˙P˙GP
37 14 1 2 latlej1 KLatPBaseKQBaseKP˙P˙Q
38 16 20 32 37 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙P˙Q
39 14 5 6 ltrncl KHLWHGTQBaseKGQBaseK
40 9 10 32 39 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQGQBaseK
41 14 1 2 latlej1 KLatGPBaseKGQBaseKGP˙GP˙GQ
42 16 22 40 41 syl3anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQGP˙GP˙GQ
43 simpr KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙Q=GP˙GQ
44 42 43 breqtrrd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQGP˙P˙Q
45 14 1 2 latjle12 KLatPBaseKGPBaseKP˙QBaseKP˙P˙QGP˙P˙QP˙GP˙P˙Q
46 16 20 22 34 45 syl13anc KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙P˙QGP˙P˙QP˙GP˙P˙Q
47 38 44 46 mpbi2and KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙GP˙P˙Q
48 14 1 16 29 24 34 36 47 lattrd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQP˙GP˙W˙P˙Q
49 13 48 eqbrtrd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQRG˙P˙Q
50 49 ex KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙Q=GP˙GQRG˙P˙Q
51 50 necon3bd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙Q¬RG˙P˙QP˙QGP˙GQ
52 8 51 mpd KHLWHPA¬P˙WQAGTPQ¬RG˙P˙QP˙QGP˙GQ