Description: Lemma for cdlemg18c . TODO: fix comment. (Contributed by NM, 15-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg12.l | |
|
cdlemg12.j | |
||
cdlemg12.m | |
||
cdlemg12.a | |
||
cdlemg12.h | |
||
cdlemg12.t | |
||
cdlemg12b.r | |
||
cdlemg18b.u | |
||
Assertion | cdlemg18b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg12.l | |
|
2 | cdlemg12.j | |
|
3 | cdlemg12.m | |
|
4 | cdlemg12.a | |
|
5 | cdlemg12.h | |
|
6 | cdlemg12.t | |
|
7 | cdlemg12b.r | |
|
8 | cdlemg18b.u | |
|
9 | simp33 | |
|
10 | simp3r | |
|
11 | simp1l | |
|
12 | simp1r | |
|
13 | simp21 | |
|
14 | simp22l | |
|
15 | simp3l1 | |
|
16 | 1 2 3 4 5 8 | cdleme0a | |
17 | 11 12 13 14 15 16 | syl212anc | |
18 | simp1 | |
|
19 | simp23 | |
|
20 | 1 4 5 6 | ltrnat | |
21 | 18 19 14 20 | syl3anc | |
22 | 1 2 4 | hlatlej1 | |
23 | 11 17 21 22 | syl3anc | |
24 | 11 | hllatd | |
25 | simp21l | |
|
26 | eqid | |
|
27 | 26 4 | atbase | |
28 | 25 27 | syl | |
29 | 26 4 | atbase | |
30 | 17 29 | syl | |
31 | 26 2 4 | hlatjcl | |
32 | 11 17 21 31 | syl3anc | |
33 | 26 1 2 | latjle12 | |
34 | 24 28 30 32 33 | syl13anc | |
35 | 10 23 34 | mpbi2and | |
36 | 1 2 3 4 5 8 | cdleme0cp | |
37 | 11 12 13 14 36 | syl22anc | |
38 | simp22 | |
|
39 | 5 6 1 2 4 3 8 | cdlemg2kq | |
40 | 18 13 38 19 39 | syl121anc | |
41 | 2 4 | hlatjcom | |
42 | 11 21 17 41 | syl3anc | |
43 | 40 42 | eqtr2d | |
44 | 35 37 43 | 3brtr3d | |
45 | 1 4 5 6 | ltrnat | |
46 | 18 19 25 45 | syl3anc | |
47 | 1 2 4 | ps-1 | |
48 | 11 25 14 15 46 21 47 | syl132anc | |
49 | 44 48 | mpbid | |
50 | 2 4 | hlatjcom | |
51 | 11 46 21 50 | syl3anc | |
52 | 49 51 | eqtr2d | |
53 | 52 | 3exp | |
54 | 53 | exp4a | |
55 | 54 | 3imp | |
56 | 55 | necon3ad | |
57 | 9 56 | mpd | |