| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg2inv.h |
|
| 2 |
|
cdlemg2inv.t |
|
| 3 |
|
cdlemg2j.l |
|
| 4 |
|
cdlemg2j.j |
|
| 5 |
|
cdlemg2j.a |
|
| 6 |
|
cdlemg2j.m |
|
| 7 |
|
cdlemg2j.u |
|
| 8 |
1 2 3 4 5 6 7
|
cdlemg2k |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp3 |
|
| 12 |
|
simp2l |
|
| 13 |
|
eqid |
|
| 14 |
3 6 13 5 1 2
|
ltrnmw |
|
| 15 |
10 11 12 14
|
syl3anc |
|
| 16 |
15
|
oveq1d |
|
| 17 |
|
simp1l |
|
| 18 |
3 5 1 2
|
ltrnel |
|
| 19 |
10 11 12 18
|
syl3anc |
|
| 20 |
19
|
simpld |
|
| 21 |
|
simp1r |
|
| 22 |
|
simp2ll |
|
| 23 |
|
simp2rl |
|
| 24 |
|
eqid |
|
| 25 |
3 4 6 5 1 7 24
|
cdleme0aa |
|
| 26 |
17 21 22 23 25
|
syl211anc |
|
| 27 |
24 1
|
lhpbase |
|
| 28 |
21 27
|
syl |
|
| 29 |
17
|
hllatd |
|
| 30 |
24 4 5
|
hlatjcl |
|
| 31 |
17 22 23 30
|
syl3anc |
|
| 32 |
24 3 6
|
latmle2 |
|
| 33 |
29 31 28 32
|
syl3anc |
|
| 34 |
7 33
|
eqbrtrid |
|
| 35 |
24 3 4 6 5
|
atmod4i2 |
|
| 36 |
17 20 26 28 34 35
|
syl131anc |
|
| 37 |
|
hlol |
|
| 38 |
17 37
|
syl |
|
| 39 |
24 4 13
|
olj02 |
|
| 40 |
38 26 39
|
syl2anc |
|
| 41 |
16 36 40
|
3eqtr3d |
|
| 42 |
9 41
|
eqtrd |
|