Metamath Proof Explorer


Theorem cdlemg33a

Description: TODO: Fix comment. (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33a KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp11 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rKHLWH
11 simp12 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rPA¬P˙W
12 simp13 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rQA¬Q˙W
13 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rNA
14 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rvAv˙W
15 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rFT
16 simp32 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rvRF
17 1 2 3 4 5 6 7 8 cdlemg31d KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNA¬N˙W
18 10 11 12 14 15 16 13 17 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙r¬N˙W
19 13 18 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rNA¬N˙W
20 simp31l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rPQ
21 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rOA
22 simp31r KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rNO
23 21 22 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rOANO
24 simp33 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rrA¬r˙WP˙r=Q˙r
25 1 2 4 5 4atex3 KHLWHPA¬P˙WQA¬Q˙WNA¬N˙WPQOANOrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙N˙O
26 10 11 12 19 20 23 24 25 syl133anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙N˙O
27 idd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAzNzN
28 idd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAzOzO
29 simp12l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rPA
30 simp13l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rQA
31 simp21l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rvA
32 1 2 3 4 5 6 7 8 cdlemg31a KHLWHPAQAvAFTN˙P˙v
33 10 29 30 31 15 32 syl122anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rN˙P˙v
34 simp23r KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rGT
35 1 2 3 4 5 6 7 9 cdlemg31a KHLWHPAQAvAGTO˙P˙v
36 10 29 30 31 34 35 syl122anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rO˙P˙v
37 simp11l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rKHL
38 37 hllatd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rKLat
39 eqid BaseK=BaseK
40 39 4 atbase NANBaseK
41 13 40 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rNBaseK
42 39 2 4 hlatjcl KHLPAvAP˙vBaseK
43 37 29 31 42 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rP˙vBaseK
44 39 4 atbase OAOBaseK
45 21 44 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rOBaseK
46 39 1 2 latjlej12 KLatNBaseKP˙vBaseKOBaseKP˙vBaseKN˙P˙vO˙P˙vN˙O˙P˙v˙P˙v
47 38 41 43 45 43 46 syl122anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rN˙P˙vO˙P˙vN˙O˙P˙v˙P˙v
48 33 36 47 mp2and KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rN˙O˙P˙v˙P˙v
49 39 2 latjidm KLatP˙vBaseKP˙v˙P˙v=P˙v
50 38 43 49 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rP˙v˙P˙v=P˙v
51 48 50 breqtrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rN˙O˙P˙v
52 51 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAN˙O˙P˙v
53 38 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAKLat
54 39 4 atbase zAzBaseK
55 54 adantl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAzBaseK
56 39 2 4 hlatjcl KHLNAOAN˙OBaseK
57 37 13 21 56 syl3anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rN˙OBaseK
58 57 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAN˙OBaseK
59 43 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAP˙vBaseK
60 39 1 lattr KLatzBaseKN˙OBaseKP˙vBaseKz˙N˙ON˙O˙P˙vz˙P˙v
61 53 55 58 59 60 syl13anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAz˙N˙ON˙O˙P˙vz˙P˙v
62 52 61 mpan2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAz˙N˙Oz˙P˙v
63 27 28 62 3anim123d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzAzNzOz˙N˙OzNzOz˙P˙v
64 63 anim2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙N˙O¬z˙WzNzOz˙P˙v
65 64 reximdva KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙N˙OzA¬z˙WzNzOz˙P˙v
66 26 65 mpd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAOAFTGTPQNOvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v