Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemg4.l | |
|
cdlemg4.a | |
||
cdlemg4.h | |
||
cdlemg4.t | |
||
cdlemg4.r | |
||
cdlemg4.j | |
||
cdlemg4b.v | |
||
Assertion | cdlemg4c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg4.l | |
|
2 | cdlemg4.a | |
|
3 | cdlemg4.h | |
|
4 | cdlemg4.t | |
|
5 | cdlemg4.r | |
|
6 | cdlemg4.j | |
|
7 | cdlemg4b.v | |
|
8 | simpll | |
|
9 | simplr2 | |
|
10 | simplr3 | |
|
11 | 1 2 3 4 5 6 7 | cdlemg4b2 | |
12 | 8 9 10 11 | syl3anc | |
13 | simpr | |
|
14 | simpll | |
|
15 | 14 | hllatd | |
16 | simpr1l | |
|
17 | eqid | |
|
18 | 17 2 | atbase | |
19 | 16 18 | syl | |
20 | simpl | |
|
21 | simpr3 | |
|
22 | 17 3 4 5 | trlcl | |
23 | 20 21 22 | syl2anc | |
24 | 7 23 | eqeltrid | |
25 | 17 1 6 | latlej2 | |
26 | 15 19 24 25 | syl3anc | |
27 | 26 | adantr | |
28 | simpr2l | |
|
29 | 17 2 | atbase | |
30 | 28 29 | syl | |
31 | 17 3 4 | ltrncl | |
32 | 20 21 30 31 | syl3anc | |
33 | 17 6 | latjcl | |
34 | 15 19 24 33 | syl3anc | |
35 | 17 1 6 | latjle12 | |
36 | 15 32 24 34 35 | syl13anc | |
37 | 36 | adantr | |
38 | 13 27 37 | mpbi2and | |
39 | 12 38 | eqbrtrrd | |
40 | 15 | adantr | |
41 | 30 | adantr | |
42 | 32 | adantr | |
43 | 19 | adantr | |
44 | 8 10 22 | syl2anc | |
45 | 7 44 | eqeltrid | |
46 | 40 43 45 33 | syl3anc | |
47 | 17 1 6 | latjle12 | |
48 | 40 41 42 46 47 | syl13anc | |
49 | 39 48 | mpbird | |
50 | 49 | simpld | |
51 | 50 | ex | |
52 | 51 | con3d | |
53 | 52 | 3impia | |