Metamath Proof Explorer


Theorem cdlemg4c

Description: TODO: FIX COMMENT. (Contributed by NM, 24-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg4c KHLWHPA¬P˙WQA¬Q˙WGT¬Q˙P˙V¬GQ˙P˙V

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 simpll KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VKHLWH
9 simplr2 KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQA¬Q˙W
10 simplr3 KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGT
11 1 2 3 4 5 6 7 cdlemg4b2 KHLWHQA¬Q˙WGTGQ˙V=Q˙GQ
12 8 9 10 11 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGQ˙V=Q˙GQ
13 simpr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGQ˙P˙V
14 simpll KHLWHPA¬P˙WQA¬Q˙WGTKHL
15 14 hllatd KHLWHPA¬P˙WQA¬Q˙WGTKLat
16 simpr1l KHLWHPA¬P˙WQA¬Q˙WGTPA
17 eqid BaseK=BaseK
18 17 2 atbase PAPBaseK
19 16 18 syl KHLWHPA¬P˙WQA¬Q˙WGTPBaseK
20 simpl KHLWHPA¬P˙WQA¬Q˙WGTKHLWH
21 simpr3 KHLWHPA¬P˙WQA¬Q˙WGTGT
22 17 3 4 5 trlcl KHLWHGTRGBaseK
23 20 21 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WGTRGBaseK
24 7 23 eqeltrid KHLWHPA¬P˙WQA¬Q˙WGTVBaseK
25 17 1 6 latlej2 KLatPBaseKVBaseKV˙P˙V
26 15 19 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTV˙P˙V
27 26 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VV˙P˙V
28 simpr2l KHLWHPA¬P˙WQA¬Q˙WGTQA
29 17 2 atbase QAQBaseK
30 28 29 syl KHLWHPA¬P˙WQA¬Q˙WGTQBaseK
31 17 3 4 ltrncl KHLWHGTQBaseKGQBaseK
32 20 21 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTGQBaseK
33 17 6 latjcl KLatPBaseKVBaseKP˙VBaseK
34 15 19 24 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTP˙VBaseK
35 17 1 6 latjle12 KLatGQBaseKVBaseKP˙VBaseKGQ˙P˙VV˙P˙VGQ˙V˙P˙V
36 15 32 24 34 35 syl13anc KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VV˙P˙VGQ˙V˙P˙V
37 36 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGQ˙P˙VV˙P˙VGQ˙V˙P˙V
38 13 27 37 mpbi2and KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGQ˙V˙P˙V
39 12 38 eqbrtrrd KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQ˙GQ˙P˙V
40 15 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VKLat
41 30 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQBaseK
42 32 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VGQBaseK
43 19 adantr KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VPBaseK
44 8 10 22 syl2anc KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VRGBaseK
45 7 44 eqeltrid KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VVBaseK
46 40 43 45 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VP˙VBaseK
47 17 1 6 latjle12 KLatQBaseKGQBaseKP˙VBaseKQ˙P˙VGQ˙P˙VQ˙GQ˙P˙V
48 40 41 42 46 47 syl13anc KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQ˙P˙VGQ˙P˙VQ˙GQ˙P˙V
49 39 48 mpbird KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQ˙P˙VGQ˙P˙V
50 49 simpld KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQ˙P˙V
51 50 ex KHLWHPA¬P˙WQA¬Q˙WGTGQ˙P˙VQ˙P˙V
52 51 con3d KHLWHPA¬P˙WQA¬Q˙WGT¬Q˙P˙V¬GQ˙P˙V
53 52 3impia KHLWHPA¬P˙WQA¬Q˙WGT¬Q˙P˙V¬GQ˙P˙V