Metamath Proof Explorer


Theorem cdlemg6c

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg6c KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGQ=Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VKHLWH
9 simprl KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VrA¬r˙W
10 simpl22 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQA¬Q˙W
11 simpl23 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFT
12 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VGT
13 simprr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙V¬r˙P˙V
14 simpl1l KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VKHL
15 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PQA
16 15 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQA
17 simprll KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VrA
18 eqid BaseK=BaseK
19 18 3 4 5 trlcl KHLWHGTRGBaseK
20 8 12 19 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VRGBaseK
21 7 20 eqeltrid KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VVBaseK
22 simp22r KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=P¬Q˙W
23 22 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙V¬Q˙W
24 1 3 4 5 trlle KHLWHGTRG˙W
25 8 12 24 syl2anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VRG˙W
26 7 25 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VV˙W
27 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PKHL
28 27 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PKLat
29 28 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VKLat
30 18 2 atbase QAQBaseK
31 15 30 syl KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PQBaseK
32 31 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQBaseK
33 simp1r KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PWH
34 18 3 lhpbase WHWBaseK
35 33 34 syl KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PWBaseK
36 35 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VWBaseK
37 18 1 lattr KLatQBaseKVBaseKWBaseKQ˙VV˙WQ˙W
38 29 32 21 36 37 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙VV˙WQ˙W
39 26 38 mpan2d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙VQ˙W
40 23 39 mtod KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙V¬Q˙V
41 18 1 6 2 hlexch2 KHLQArAVBaseK¬Q˙VQ˙r˙Vr˙Q˙V
42 14 16 17 21 40 41 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙r˙Vr˙Q˙V
43 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙P˙V
44 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PPA
45 44 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VPA
46 18 2 atbase PAPBaseK
47 45 46 syl KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VPBaseK
48 18 1 6 latlej2 KLatPBaseKVBaseKV˙P˙V
49 29 47 21 48 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VV˙P˙V
50 18 6 latjcl KLatPBaseKVBaseKP˙VBaseK
51 29 47 21 50 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VP˙VBaseK
52 18 1 6 latjle12 KLatQBaseKVBaseKP˙VBaseKQ˙P˙VV˙P˙VQ˙V˙P˙V
53 29 32 21 51 52 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙P˙VV˙P˙VQ˙V˙P˙V
54 43 49 53 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙V˙P˙V
55 18 2 atbase rArBaseK
56 17 55 syl KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VrBaseK
57 18 6 latjcl KLatQBaseKVBaseKQ˙VBaseK
58 29 32 21 57 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙VBaseK
59 18 1 lattr KLatrBaseKQ˙VBaseKP˙VBaseKr˙Q˙VQ˙V˙P˙Vr˙P˙V
60 29 56 58 51 59 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙Vr˙Q˙VQ˙V˙P˙Vr˙P˙V
61 54 60 mpan2d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙Vr˙Q˙Vr˙P˙V
62 42 61 syld KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VQ˙r˙Vr˙P˙V
63 13 62 mtod KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙V¬Q˙r˙V
64 simpl21 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VPA¬P˙W
65 simpl33 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGP=P
66 1 2 3 4 5 6 7 cdlemg6a KHLWHPA¬P˙WrA¬r˙WFTGT¬r˙P˙VFGP=PFGr=r
67 8 64 9 11 12 13 65 66 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGr=r
68 1 2 3 4 5 6 7 cdlemg6b KHLWHrA¬r˙WQA¬Q˙WFTGT¬Q˙r˙VFGr=rFGQ=Q
69 8 9 10 11 12 63 67 68 syl133anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGQ=Q
70 69 ex KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGQ=Q