Metamath Proof Explorer


Theorem cdlemk55a

Description: Lemma for cdlemk55 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk55a KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=G/gXI/gX

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp1l KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIKHLWH
13 simp211 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFT
14 simp212 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFIB
15 13 14 jca KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIFTFIB
16 simp32 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIjT
17 simp213 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGINT
18 simp23 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIPA¬P˙W
19 simp1r KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIRF=RN
20 18 19 jca KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIPA¬P˙WRF=RN
21 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id KHLWHFTFIBjTNTPA¬P˙WRF=RNj/gXT
22 12 15 16 17 20 21 syl131anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIj/gXT
23 1 6 7 ltrn1o KHLWHj/gXTj/gX:B1-1 ontoB
24 12 22 23 syl2anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIj/gX:B1-1 ontoB
25 f1ococnv2 j/gX:B1-1 ontoBj/gXj/gX-1=IB
26 24 25 syl KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIj/gXj/gX-1=IB
27 26 coeq2d KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gXj/gX-1=GI/gXIB
28 simp22 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGT
29 simp31l KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIIT
30 6 7 ltrnco KHLWHGTITGIT
31 12 28 29 30 syl3anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGIT
32 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id KHLWHFTFIBGITNTPA¬P˙WRF=RNGI/gXT
33 12 15 31 17 20 32 syl131anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXT
34 1 6 7 ltrn1o KHLWHGI/gXTGI/gX:B1-1 ontoB
35 12 33 34 syl2anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX:B1-1 ontoB
36 f1of GI/gX:B1-1 ontoBGI/gX:BB
37 fcoi1 GI/gX:BBGI/gXIB=GI/gX
38 35 36 37 3syl KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXIB=GI/gX
39 27 38 eqtr2d KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=GI/gXj/gXj/gX-1
40 coass GI/gXj/gXj/gX-1=GI/gXj/gXj/gX-1
41 39 40 eqtr4di KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=GI/gXj/gXj/gX-1
42 1 2 3 4 5 6 7 8 9 10 11 cdlemk54 KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gX=G/gXI/gXj/gX
43 42 coeq1d KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gXj/gX-1=G/gXI/gXj/gXj/gX-1
44 coass G/gXI/gXj/gXj/gX-1=G/gXI/gXj/gXj/gX-1
45 26 coeq2d KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gXj/gXj/gX-1=G/gXI/gXIB
46 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id KHLWHFTFIBGTNTPA¬P˙WRF=RNG/gXT
47 12 15 28 17 20 46 syl131anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXT
48 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id KHLWHFTFIBITNTPA¬P˙WRF=RNI/gXT
49 12 15 29 17 20 48 syl131anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGII/gXT
50 6 7 ltrnco KHLWHG/gXTI/gXTG/gXI/gXT
51 12 47 49 50 syl3anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gXT
52 1 6 7 ltrn1o KHLWHG/gXI/gXTG/gXI/gX:B1-1 ontoB
53 12 51 52 syl2anc KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gX:B1-1 ontoB
54 f1of G/gXI/gX:B1-1 ontoBG/gXI/gX:BB
55 fcoi1 G/gXI/gX:BBG/gXI/gXIB=G/gXI/gX
56 53 54 55 3syl KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gXIB=G/gXI/gX
57 45 56 eqtrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gXj/gXj/gX-1=G/gXI/gX
58 44 57 eqtrid KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIG/gXI/gXj/gXj/gX-1=G/gXI/gX
59 43 58 eqtrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gXj/gXj/gX-1=G/gXI/gX
60 41 59 eqtrd KHLWHRF=RNFTFIBNTGTPA¬P˙WITRG=RIjTjIBRjRGRjRGIGI/gX=G/gXI/gX