Metamath Proof Explorer


Theorem cdlemk8

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
Assertion cdlemk8 K HL W H G T X T P A ¬ P ˙ W G P ˙ X P = G P ˙ R X G -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 coass X G -1 G = X G -1 G
10 simp1 K HL W H G T X T P A ¬ P ˙ W K HL W H
11 simp2l K HL W H G T X T P A ¬ P ˙ W G T
12 1 5 6 ltrn1o K HL W H G T G : B 1-1 onto B
13 10 11 12 syl2anc K HL W H G T X T P A ¬ P ˙ W G : B 1-1 onto B
14 f1ococnv1 G : B 1-1 onto B G -1 G = I B
15 13 14 syl K HL W H G T X T P A ¬ P ˙ W G -1 G = I B
16 15 coeq2d K HL W H G T X T P A ¬ P ˙ W X G -1 G = X I B
17 simp2r K HL W H G T X T P A ¬ P ˙ W X T
18 1 5 6 ltrn1o K HL W H X T X : B 1-1 onto B
19 10 17 18 syl2anc K HL W H G T X T P A ¬ P ˙ W X : B 1-1 onto B
20 f1of X : B 1-1 onto B X : B B
21 fcoi1 X : B B X I B = X
22 19 20 21 3syl K HL W H G T X T P A ¬ P ˙ W X I B = X
23 16 22 eqtrd K HL W H G T X T P A ¬ P ˙ W X G -1 G = X
24 9 23 eqtrid K HL W H G T X T P A ¬ P ˙ W X G -1 G = X
25 24 fveq1d K HL W H G T X T P A ¬ P ˙ W X G -1 G P = X P
26 5 6 ltrncnv K HL W H G T G -1 T
27 10 11 26 syl2anc K HL W H G T X T P A ¬ P ˙ W G -1 T
28 5 6 ltrnco K HL W H X T G -1 T X G -1 T
29 10 17 27 28 syl3anc K HL W H G T X T P A ¬ P ˙ W X G -1 T
30 simp3l K HL W H G T X T P A ¬ P ˙ W P A
31 2 4 5 6 ltrncoval K HL W H X G -1 T G T P A X G -1 G P = X G -1 G P
32 10 29 11 30 31 syl121anc K HL W H G T X T P A ¬ P ˙ W X G -1 G P = X G -1 G P
33 25 32 eqtr3d K HL W H G T X T P A ¬ P ˙ W X P = X G -1 G P
34 33 oveq2d K HL W H G T X T P A ¬ P ˙ W G P ˙ X P = G P ˙ X G -1 G P
35 2 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
36 35 3adant2r K HL W H G T X T P A ¬ P ˙ W G P A ¬ G P ˙ W
37 2 3 4 5 6 7 trljat1 K HL W H X G -1 T G P A ¬ G P ˙ W G P ˙ R X G -1 = G P ˙ X G -1 G P
38 10 29 36 37 syl3anc K HL W H G T X T P A ¬ P ˙ W G P ˙ R X G -1 = G P ˙ X G -1 G P
39 34 38 eqtr4d K HL W H G T X T P A ¬ P ˙ W G P ˙ X P = G P ˙ R X G -1