Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|
2 |
|
cdlemk.l |
|
3 |
|
cdlemk.j |
|
4 |
|
cdlemk.a |
|
5 |
|
cdlemk.h |
|
6 |
|
cdlemk.t |
|
7 |
|
cdlemk.r |
|
8 |
|
cdlemk.m |
|
9 |
|
coass |
|
10 |
|
simp1 |
|
11 |
|
simp2l |
|
12 |
1 5 6
|
ltrn1o |
|
13 |
10 11 12
|
syl2anc |
|
14 |
|
f1ococnv1 |
|
15 |
13 14
|
syl |
|
16 |
15
|
coeq2d |
|
17 |
|
simp2r |
|
18 |
1 5 6
|
ltrn1o |
|
19 |
10 17 18
|
syl2anc |
|
20 |
|
f1of |
|
21 |
|
fcoi1 |
|
22 |
19 20 21
|
3syl |
|
23 |
16 22
|
eqtrd |
|
24 |
9 23
|
eqtrid |
|
25 |
24
|
fveq1d |
|
26 |
5 6
|
ltrncnv |
|
27 |
10 11 26
|
syl2anc |
|
28 |
5 6
|
ltrnco |
|
29 |
10 17 27 28
|
syl3anc |
|
30 |
|
simp3l |
|
31 |
2 4 5 6
|
ltrncoval |
|
32 |
10 29 11 30 31
|
syl121anc |
|
33 |
25 32
|
eqtr3d |
|
34 |
33
|
oveq2d |
|
35 |
2 4 5 6
|
ltrnel |
|
36 |
35
|
3adant2r |
|
37 |
2 3 4 5 6 7
|
trljat1 |
|
38 |
10 29 36 37
|
syl3anc |
|
39 |
34 38
|
eqtr4d |
|