Metamath Proof Explorer


Theorem cdlemn2

Description: Part of proof of Lemma N of Crawley p. 121 line 30. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses cdlemn2.b B=BaseK
cdlemn2.l ˙=K
cdlemn2.j ˙=joinK
cdlemn2.a A=AtomsK
cdlemn2.h H=LHypK
cdlemn2.t T=LTrnKW
cdlemn2.r R=trLKW
cdlemn2.f F=ιhT|hQ=S
Assertion cdlemn2 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF˙X

Proof

Step Hyp Ref Expression
1 cdlemn2.b B=BaseK
2 cdlemn2.l ˙=K
3 cdlemn2.j ˙=joinK
4 cdlemn2.a A=AtomsK
5 cdlemn2.h H=LHypK
6 cdlemn2.t T=LTrnKW
7 cdlemn2.r R=trLKW
8 cdlemn2.f F=ιhT|hQ=S
9 simp1 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XKHLWH
10 simp21 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQA¬Q˙W
11 simp22 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XSA¬S˙W
12 2 4 5 6 8 ltrniotacl KHLWHQA¬Q˙WSA¬S˙WFT
13 9 10 11 12 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XFT
14 eqid meetK=meetK
15 2 3 14 4 5 6 7 trlval2 KHLWHFTQA¬Q˙WRF=Q˙FQmeetKW
16 9 13 10 15 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF=Q˙FQmeetKW
17 2 4 5 6 8 ltrniotaval KHLWHQA¬Q˙WSA¬S˙WFQ=S
18 9 10 11 17 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XFQ=S
19 18 oveq2d KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙FQ=Q˙S
20 19 oveq1d KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙FQmeetKW=Q˙SmeetKW
21 16 20 eqtrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF=Q˙SmeetKW
22 simp1l KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XKHL
23 22 hllatd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XKLat
24 simp21l KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQA
25 1 4 atbase QAQB
26 24 25 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQB
27 simp23l KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XXB
28 1 2 3 latlej1 KLatQBXBQ˙Q˙X
29 23 26 27 28 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙Q˙X
30 simp3 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XS˙Q˙X
31 simp22l KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XSA
32 1 4 atbase SASB
33 31 32 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XSB
34 1 3 latjcl KLatQBXBQ˙XB
35 23 26 27 34 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙XB
36 1 2 3 latjle12 KLatQBSBQ˙XBQ˙Q˙XS˙Q˙XQ˙S˙Q˙X
37 23 26 33 35 36 syl13anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙Q˙XS˙Q˙XQ˙S˙Q˙X
38 29 30 37 mpbi2and KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙S˙Q˙X
39 1 3 4 hlatjcl KHLQASAQ˙SB
40 22 24 31 39 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙SB
41 simp1r KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XWH
42 1 5 lhpbase WHWB
43 41 42 syl KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XWB
44 1 2 14 latmlem1 KLatQ˙SBQ˙XBWBQ˙S˙Q˙XQ˙SmeetKW˙Q˙XmeetKW
45 23 40 35 43 44 syl13anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙S˙Q˙XQ˙SmeetKW˙Q˙XmeetKW
46 38 45 mpd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙SmeetKW˙Q˙XmeetKW
47 21 46 eqbrtrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF˙Q˙XmeetKW
48 simp23 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XXBX˙W
49 1 2 3 14 4 5 lhple KHLWHQA¬Q˙WXBX˙WQ˙XmeetKW=X
50 9 10 48 49 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQ˙XmeetKW=X
51 47 50 breqtrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF˙X