Metamath Proof Explorer


Theorem cdlemn4a

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses cdlemn4.b B=BaseK
cdlemn4.l ˙=K
cdlemn4.a A=AtomsK
cdlemn4.p P=ocKW
cdlemn4.h H=LHypK
cdlemn4.t T=LTrnKW
cdlemn4.o O=hTIB
cdlemn4.u U=DVecHKW
cdlemn4.f F=ιhT|hP=Q
cdlemn4.g G=ιhT|hP=R
cdlemn4.j J=ιhT|hQ=R
cdlemn4a.n N=LSpanU
cdlemn4a.s ˙=LSSumU
Assertion cdlemn4a KHLWHQA¬Q˙WRA¬R˙WNGITNFIT˙NJO

Proof

Step Hyp Ref Expression
1 cdlemn4.b B=BaseK
2 cdlemn4.l ˙=K
3 cdlemn4.a A=AtomsK
4 cdlemn4.p P=ocKW
5 cdlemn4.h H=LHypK
6 cdlemn4.t T=LTrnKW
7 cdlemn4.o O=hTIB
8 cdlemn4.u U=DVecHKW
9 cdlemn4.f F=ιhT|hP=Q
10 cdlemn4.g G=ιhT|hP=R
11 cdlemn4.j J=ιhT|hQ=R
12 cdlemn4a.n N=LSpanU
13 cdlemn4a.s ˙=LSSumU
14 eqid +U=+U
15 1 2 3 4 5 6 7 8 9 10 11 14 cdlemn4 KHLWHQA¬Q˙WRA¬R˙WGIT=FIT+UJO
16 15 sneqd KHLWHQA¬Q˙WRA¬R˙WGIT=FIT+UJO
17 16 fveq2d KHLWHQA¬Q˙WRA¬R˙WNGIT=NFIT+UJO
18 simp1 KHLWHQA¬Q˙WRA¬R˙WKHLWH
19 5 8 18 dvhlmod KHLWHQA¬Q˙WRA¬R˙WULMod
20 2 3 5 4 lhpocnel2 KHLWHPA¬P˙W
21 20 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WPA¬P˙W
22 simp2 KHLWHQA¬Q˙WRA¬R˙WQA¬Q˙W
23 2 3 5 6 9 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
24 18 21 22 23 syl3anc KHLWHQA¬Q˙WRA¬R˙WFT
25 eqid TEndoKW=TEndoKW
26 5 6 25 tendoidcl KHLWHITTEndoKW
27 26 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WITTEndoKW
28 eqid BaseU=BaseU
29 5 6 25 8 28 dvhelvbasei KHLWHFTITTEndoKWFITBaseU
30 18 24 27 29 syl12anc KHLWHQA¬Q˙WRA¬R˙WFITBaseU
31 2 3 5 6 11 ltrniotacl KHLWHQA¬Q˙WRA¬R˙WJT
32 1 5 6 25 7 tendo0cl KHLWHOTEndoKW
33 32 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WOTEndoKW
34 5 6 25 8 28 dvhelvbasei KHLWHJTOTEndoKWJOBaseU
35 18 31 33 34 syl12anc KHLWHQA¬Q˙WRA¬R˙WJOBaseU
36 28 14 12 13 lspsntri ULModFITBaseUJOBaseUNFIT+UJONFIT˙NJO
37 19 30 35 36 syl3anc KHLWHQA¬Q˙WRA¬R˙WNFIT+UJONFIT˙NJO
38 17 37 eqsstrd KHLWHQA¬Q˙WRA¬R˙WNGITNFIT˙NJO