Metamath Proof Explorer


Theorem cgrg3col4

Description: Lemma 11.28 of Schwabhauser p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020)

Ref Expression
Hypotheses isleag.p P=BaseG
isleag.g φG𝒢Tarski
isleag.a φAP
isleag.b φBP
isleag.c φCP
isleag.d φDP
isleag.e φEP
isleag.f φFP
cgrg3col4.l L=Line𝒢G
cgrg3col4.x φXP
cgrg3col4.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
cgrg3col4.2 φXALCA=C
Assertion cgrg3col4 φyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩

Proof

Step Hyp Ref Expression
1 isleag.p P=BaseG
2 isleag.g φG𝒢Tarski
3 isleag.a φAP
4 isleag.b φBP
5 isleag.c φCP
6 isleag.d φDP
7 isleag.e φEP
8 isleag.f φFP
9 cgrg3col4.l L=Line𝒢G
10 cgrg3col4.x φXP
11 cgrg3col4.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
12 cgrg3col4.2 φXALCA=C
13 eqid ItvG=ItvG
14 2 ad2antrr φA=CBALXA=XG𝒢Tarski
15 3 ad2antrr φA=CBALXA=XAP
16 4 ad2antrr φA=CBALXA=XBP
17 10 ad2antrr φA=CBALXA=XXP
18 eqid 𝒢G=𝒢G
19 6 ad2antrr φA=CBALXA=XDP
20 7 ad2antrr φA=CBALXA=XEP
21 eqid distG=distG
22 simpr φA=CBALXA=XBALXA=X
23 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp1 φAdistGB=DdistGE
24 23 ad2antrr φA=CBALXA=XAdistGB=DdistGE
25 1 9 13 14 15 16 17 18 19 20 21 22 24 lnext φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩
26 11 ad4antr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩
27 14 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩G𝒢Tarski
28 17 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩XP
29 15 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩AP
30 simplr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩yP
31 19 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩DP
32 16 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩BP
33 20 ad2antrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩EP
34 simpr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩⟨“ABX”⟩𝒢G⟨“DEy”⟩
35 1 21 13 18 27 29 32 28 31 33 30 34 cgr3simp3 φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩XdistGA=ydistGD
36 1 21 13 27 28 29 30 31 35 tgcgrcomlr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩AdistGX=DdistGy
37 1 21 13 18 27 29 32 28 31 33 30 34 cgr3simp2 φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩BdistGX=EdistGy
38 5 ad4antr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩CP
39 8 ad4antr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩FP
40 simpr φA=CA=C
41 40 ad3antrrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩A=C
42 41 oveq2d φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩XdistGA=XdistGC
43 2 adantr φA=CG𝒢Tarski
44 3 adantr φA=CAP
45 5 adantr φA=CCP
46 6 adantr φA=CDP
47 8 adantr φA=CFP
48 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp3 φCdistGA=FdistGD
49 1 21 13 2 5 3 8 6 48 tgcgrcomlr φAdistGC=DdistGF
50 49 adantr φA=CAdistGC=DdistGF
51 1 21 13 43 44 45 46 47 50 40 tgcgreq φA=CD=F
52 51 ad3antrrr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩D=F
53 52 oveq2d φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩ydistGD=ydistGF
54 35 42 53 3eqtr3d φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩XdistGC=ydistGF
55 1 21 13 27 28 38 30 39 54 tgcgrcomlr φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩CdistGX=FdistGy
56 36 37 55 3jca φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
57 1 21 13 18 27 29 32 38 28 31 33 39 30 tgcgr4 φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
58 26 56 57 mpbir2and φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
59 58 ex φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
60 59 reximdva φA=CBALXA=XyP⟨“ABX”⟩𝒢G⟨“DEy”⟩yP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
61 25 60 mpd φA=CBALXA=XyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
62 eqid hl𝒢G=hl𝒢G
63 2 ad2antrr φA=C¬BALXA=XG𝒢Tarski
64 63 ad2antrr φA=C¬BALXA=XxP¬xDLEG𝒢Tarski
65 4 ad2antrr φA=C¬BALXA=XBP
66 65 ad2antrr φA=C¬BALXA=XxP¬xDLEBP
67 3 ad2antrr φA=C¬BALXA=XAP
68 67 ad2antrr φA=C¬BALXA=XxP¬xDLEAP
69 10 ad2antrr φA=C¬BALXA=XXP
70 69 ad2antrr φA=C¬BALXA=XxP¬xDLEXP
71 7 ad2antrr φA=C¬BALXA=XEP
72 71 ad2antrr φA=C¬BALXA=XxP¬xDLEEP
73 6 ad2antrr φA=C¬BALXA=XDP
74 73 ad2antrr φA=C¬BALXA=XxP¬xDLEDP
75 simplr φA=C¬BALXA=XxP¬xDLExP
76 simpllr φA=C¬BALXA=XxP¬xDLE¬BALXA=X
77 simpr φA=C¬BALXA=XxP¬xDLE¬xDLE
78 23 ad2antrr φA=C¬BALXA=XAdistGB=DdistGE
79 simpr φA=C¬BALXA=X¬BALXA=X
80 1 13 9 63 65 67 69 79 ncolne1 φA=C¬BALXA=XBA
81 80 necomd φA=C¬BALXA=XAB
82 1 21 13 63 67 65 73 71 78 81 tgcgrneq φA=C¬BALXA=XDE
83 82 ad2antrr φA=C¬BALXA=XxP¬xDLEDE
84 83 neneqd φA=C¬BALXA=XxP¬xDLE¬D=E
85 ioran ¬xDLED=E¬xDLE¬D=E
86 77 84 85 sylanbrc φA=C¬BALXA=XxP¬xDLE¬xDLED=E
87 1 9 13 64 74 72 75 86 ncolcom φA=C¬BALXA=XxP¬xDLE¬xELDE=D
88 1 9 13 64 72 74 75 87 ncolrot1 φA=C¬BALXA=XxP¬xDLE¬EDLxD=x
89 1 21 13 2 3 4 6 7 23 tgcgrcomlr φBdistGA=EdistGD
90 89 ad4antr φA=C¬BALXA=XxP¬xDLEBdistGA=EdistGD
91 1 21 13 9 62 64 66 68 70 72 74 75 76 88 90 trgcopy φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩yhp𝒢GELDx
92 11 ad6antr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩
93 64 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩G𝒢Tarski
94 66 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩BP
95 68 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩AP
96 70 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩XP
97 72 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩EP
98 74 ad2antrr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩DP
99 simplr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩yP
100 simpr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩⟨“BAX”⟩𝒢G⟨“EDy”⟩
101 1 21 13 18 93 94 95 96 97 98 99 100 cgr3simp2 φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩AdistGX=DdistGy
102 1 21 13 18 93 94 95 96 97 98 99 100 cgr3simp3 φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩XdistGB=ydistGE
103 1 21 13 93 96 94 99 97 102 tgcgrcomlr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩BdistGX=EdistGy
104 45 ad5antr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩CP
105 47 ad5antr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩FP
106 1 21 13 93 95 96 98 99 101 tgcgrcomlr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩XdistGA=ydistGD
107 simp-6r φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩A=C
108 107 oveq2d φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩XdistGA=XdistGC
109 51 ad5antr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩D=F
110 109 oveq2d φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩ydistGD=ydistGF
111 106 108 110 3eqtr3d φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩XdistGC=ydistGF
112 1 21 13 93 96 104 99 105 111 tgcgrcomlr φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩CdistGX=FdistGy
113 101 103 112 3jca φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
114 1 21 13 18 93 95 94 104 96 98 97 105 99 tgcgr4 φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
115 92 113 114 mpbir2and φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
116 115 ex φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
117 116 adantrd φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩yhp𝒢GELDx⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
118 117 reximdva φA=C¬BALXA=XxP¬xDLEyP⟨“BAX”⟩𝒢G⟨“EDy”⟩yhp𝒢GELDxyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
119 91 118 mpd φA=C¬BALXA=XxP¬xDLEyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
120 1 9 13 63 67 69 65 79 ncoltgdim2 φA=C¬BALXA=XGDim𝒢2
121 1 13 9 63 120 73 71 82 tglowdim2ln φA=C¬BALXA=XxP¬xDLE
122 119 121 r19.29a φA=C¬BALXA=XyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
123 61 122 pm2.61dan φA=CyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
124 1 9 13 2 3 5 10 12 colcom φXCLAC=A
125 1 9 13 2 5 3 10 124 colrot1 φCALXA=X
126 1 9 13 2 3 5 10 18 6 8 21 125 49 lnext φyP⟨“ACX”⟩𝒢G⟨“DFy”⟩
127 126 adantr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩
128 11 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩
129 2 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩G𝒢Tarski
130 10 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩XP
131 3 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩AP
132 simplr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩yP
133 6 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩DP
134 5 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩CP
135 8 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩FP
136 simpr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩⟨“ACX”⟩𝒢G⟨“DFy”⟩
137 1 21 13 18 129 131 134 130 133 135 132 136 cgr3simp3 φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩XdistGA=ydistGD
138 1 21 13 129 130 131 132 133 137 tgcgrcomlr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩AdistGX=DdistGy
139 4 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩BP
140 7 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩EP
141 125 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩CALXA=X
142 23 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩AdistGB=DdistGE
143 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp2 φBdistGC=EdistGF
144 1 21 13 2 4 5 7 8 143 tgcgrcomlr φCdistGB=FdistGE
145 144 ad3antrrr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩CdistGB=FdistGE
146 simpllr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩AC
147 1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146 tgfscgr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩XdistGB=ydistGE
148 1 21 13 129 130 139 132 140 147 tgcgrcomlr φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩BdistGX=EdistGy
149 1 21 13 18 129 131 134 130 133 135 132 136 cgr3simp2 φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩CdistGX=FdistGy
150 138 148 149 3jca φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
151 1 21 13 18 129 131 139 134 130 133 140 135 132 tgcgr4 φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩⟨“ABC”⟩𝒢G⟨“DEF”⟩AdistGX=DdistGyBdistGX=EdistGyCdistGX=FdistGy
152 128 150 151 mpbir2and φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
153 152 ex φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
154 153 reximdva φACyP⟨“ACX”⟩𝒢G⟨“DFy”⟩yP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
155 127 154 mpd φACyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩
156 123 155 pm2.61dane φyP⟨“ABCX”⟩𝒢G⟨“DEFy”⟩