Metamath Proof Explorer


Theorem cgrg3col4

Description: Lemma 11.28 of Schwabhauser p. 102. Extend a congruence of three points with a fourth colinear point. (Contributed by Thierry Arnoux, 8-Oct-2020)

Ref Expression
Hypotheses isleag.p P = Base G
isleag.g φ G 𝒢 Tarski
isleag.a φ A P
isleag.b φ B P
isleag.c φ C P
isleag.d φ D P
isleag.e φ E P
isleag.f φ F P
cgrg3col4.l L = Line 𝒢 G
cgrg3col4.x φ X P
cgrg3col4.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
cgrg3col4.2 φ X A L C A = C
Assertion cgrg3col4 φ y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩

Proof

Step Hyp Ref Expression
1 isleag.p P = Base G
2 isleag.g φ G 𝒢 Tarski
3 isleag.a φ A P
4 isleag.b φ B P
5 isleag.c φ C P
6 isleag.d φ D P
7 isleag.e φ E P
8 isleag.f φ F P
9 cgrg3col4.l L = Line 𝒢 G
10 cgrg3col4.x φ X P
11 cgrg3col4.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
12 cgrg3col4.2 φ X A L C A = C
13 eqid Itv G = Itv G
14 2 ad2antrr φ A = C B A L X A = X G 𝒢 Tarski
15 3 ad2antrr φ A = C B A L X A = X A P
16 4 ad2antrr φ A = C B A L X A = X B P
17 10 ad2antrr φ A = C B A L X A = X X P
18 eqid 𝒢 G = 𝒢 G
19 6 ad2antrr φ A = C B A L X A = X D P
20 7 ad2antrr φ A = C B A L X A = X E P
21 eqid dist G = dist G
22 simpr φ A = C B A L X A = X B A L X A = X
23 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp1 φ A dist G B = D dist G E
24 23 ad2antrr φ A = C B A L X A = X A dist G B = D dist G E
25 1 9 13 14 15 16 17 18 19 20 21 22 24 lnext φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩
26 11 ad4antr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
27 14 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ G 𝒢 Tarski
28 17 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ X P
29 15 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ A P
30 simplr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ y P
31 19 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ D P
32 16 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ B P
33 20 ad2antrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ E P
34 simpr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩
35 1 21 13 18 27 29 32 28 31 33 30 34 cgr3simp3 φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ X dist G A = y dist G D
36 1 21 13 27 28 29 30 31 35 tgcgrcomlr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ A dist G X = D dist G y
37 1 21 13 18 27 29 32 28 31 33 30 34 cgr3simp2 φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ B dist G X = E dist G y
38 5 ad4antr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ C P
39 8 ad4antr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ F P
40 simpr φ A = C A = C
41 40 ad3antrrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ A = C
42 41 oveq2d φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ X dist G A = X dist G C
43 2 adantr φ A = C G 𝒢 Tarski
44 3 adantr φ A = C A P
45 5 adantr φ A = C C P
46 6 adantr φ A = C D P
47 8 adantr φ A = C F P
48 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp3 φ C dist G A = F dist G D
49 1 21 13 2 5 3 8 6 48 tgcgrcomlr φ A dist G C = D dist G F
50 49 adantr φ A = C A dist G C = D dist G F
51 1 21 13 43 44 45 46 47 50 40 tgcgreq φ A = C D = F
52 51 ad3antrrr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ D = F
53 52 oveq2d φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ y dist G D = y dist G F
54 35 42 53 3eqtr3d φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ X dist G C = y dist G F
55 1 21 13 27 28 38 30 39 54 tgcgrcomlr φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ C dist G X = F dist G y
56 36 37 55 3jca φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
57 1 21 13 18 27 29 32 38 28 31 33 39 30 tgcgr4 φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
58 26 56 57 mpbir2and φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
59 58 ex φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
60 59 reximdva φ A = C B A L X A = X y P ⟨“ ABX ”⟩ 𝒢 G ⟨“ DEy ”⟩ y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
61 25 60 mpd φ A = C B A L X A = X y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
62 eqid hl 𝒢 G = hl 𝒢 G
63 2 ad2antrr φ A = C ¬ B A L X A = X G 𝒢 Tarski
64 63 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E G 𝒢 Tarski
65 4 ad2antrr φ A = C ¬ B A L X A = X B P
66 65 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E B P
67 3 ad2antrr φ A = C ¬ B A L X A = X A P
68 67 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E A P
69 10 ad2antrr φ A = C ¬ B A L X A = X X P
70 69 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E X P
71 7 ad2antrr φ A = C ¬ B A L X A = X E P
72 71 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E E P
73 6 ad2antrr φ A = C ¬ B A L X A = X D P
74 73 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E D P
75 simplr φ A = C ¬ B A L X A = X x P ¬ x D L E x P
76 simpllr φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ B A L X A = X
77 simpr φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ x D L E
78 23 ad2antrr φ A = C ¬ B A L X A = X A dist G B = D dist G E
79 simpr φ A = C ¬ B A L X A = X ¬ B A L X A = X
80 1 13 9 63 65 67 69 79 ncolne1 φ A = C ¬ B A L X A = X B A
81 80 necomd φ A = C ¬ B A L X A = X A B
82 1 21 13 63 67 65 73 71 78 81 tgcgrneq φ A = C ¬ B A L X A = X D E
83 82 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E D E
84 83 neneqd φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ D = E
85 ioran ¬ x D L E D = E ¬ x D L E ¬ D = E
86 77 84 85 sylanbrc φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ x D L E D = E
87 1 9 13 64 74 72 75 86 ncolcom φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ x E L D E = D
88 1 9 13 64 72 74 75 87 ncolrot1 φ A = C ¬ B A L X A = X x P ¬ x D L E ¬ E D L x D = x
89 1 21 13 2 3 4 6 7 23 tgcgrcomlr φ B dist G A = E dist G D
90 89 ad4antr φ A = C ¬ B A L X A = X x P ¬ x D L E B dist G A = E dist G D
91 1 21 13 9 62 64 66 68 70 72 74 75 76 88 90 trgcopy φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ y hp 𝒢 G E L D x
92 11 ad6antr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
93 64 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ G 𝒢 Tarski
94 66 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ B P
95 68 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ A P
96 70 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ X P
97 72 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ E P
98 74 ad2antrr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ D P
99 simplr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ y P
100 simpr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩
101 1 21 13 18 93 94 95 96 97 98 99 100 cgr3simp2 φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ A dist G X = D dist G y
102 1 21 13 18 93 94 95 96 97 98 99 100 cgr3simp3 φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ X dist G B = y dist G E
103 1 21 13 93 96 94 99 97 102 tgcgrcomlr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ B dist G X = E dist G y
104 45 ad5antr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ C P
105 47 ad5antr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ F P
106 1 21 13 93 95 96 98 99 101 tgcgrcomlr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ X dist G A = y dist G D
107 simp-6r φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ A = C
108 107 oveq2d φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ X dist G A = X dist G C
109 51 ad5antr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ D = F
110 109 oveq2d φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ y dist G D = y dist G F
111 106 108 110 3eqtr3d φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ X dist G C = y dist G F
112 1 21 13 93 96 104 99 105 111 tgcgrcomlr φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ C dist G X = F dist G y
113 101 103 112 3jca φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
114 1 21 13 18 93 95 94 104 96 98 97 105 99 tgcgr4 φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
115 92 113 114 mpbir2and φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
116 115 ex φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
117 116 adantrd φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ y hp 𝒢 G E L D x ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
118 117 reximdva φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ BAX ”⟩ 𝒢 G ⟨“ EDy ”⟩ y hp 𝒢 G E L D x y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
119 91 118 mpd φ A = C ¬ B A L X A = X x P ¬ x D L E y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
120 1 9 13 63 67 69 65 79 ncoltgdim2 φ A = C ¬ B A L X A = X G Dim 𝒢 2
121 1 13 9 63 120 73 71 82 tglowdim2ln φ A = C ¬ B A L X A = X x P ¬ x D L E
122 119 121 r19.29a φ A = C ¬ B A L X A = X y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
123 61 122 pm2.61dan φ A = C y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
124 1 9 13 2 3 5 10 12 colcom φ X C L A C = A
125 1 9 13 2 5 3 10 124 colrot1 φ C A L X A = X
126 1 9 13 2 3 5 10 18 6 8 21 125 49 lnext φ y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩
127 126 adantr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩
128 11 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
129 2 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ G 𝒢 Tarski
130 10 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ X P
131 3 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ A P
132 simplr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ y P
133 6 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ D P
134 5 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ C P
135 8 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ F P
136 simpr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩
137 1 21 13 18 129 131 134 130 133 135 132 136 cgr3simp3 φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ X dist G A = y dist G D
138 1 21 13 129 130 131 132 133 137 tgcgrcomlr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ A dist G X = D dist G y
139 4 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ B P
140 7 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ E P
141 125 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ C A L X A = X
142 23 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ A dist G B = D dist G E
143 1 21 13 18 2 3 4 5 6 7 8 11 cgr3simp2 φ B dist G C = E dist G F
144 1 21 13 2 4 5 7 8 143 tgcgrcomlr φ C dist G B = F dist G E
145 144 ad3antrrr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ C dist G B = F dist G E
146 simpllr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ A C
147 1 9 13 129 131 134 130 18 133 135 21 139 132 140 141 136 142 145 146 tgfscgr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ X dist G B = y dist G E
148 1 21 13 129 130 139 132 140 147 tgcgrcomlr φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ B dist G X = E dist G y
149 1 21 13 18 129 131 134 130 133 135 132 136 cgr3simp2 φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ C dist G X = F dist G y
150 138 148 149 3jca φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
151 1 21 13 18 129 131 139 134 130 133 140 135 132 tgcgr4 φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩ A dist G X = D dist G y B dist G X = E dist G y C dist G X = F dist G y
152 128 150 151 mpbir2and φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
153 152 ex φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
154 153 reximdva φ A C y P ⟨“ ACX ”⟩ 𝒢 G ⟨“ DFy ”⟩ y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
155 127 154 mpd φ A C y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩
156 123 155 pm2.61dane φ y P ⟨“ ABCX ”⟩ 𝒢 G ⟨“ DEFy ”⟩