Metamath Proof Explorer


Theorem chfacfpmmulcl

Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A=NMatR
cayhamlem1.b B=BaseA
cayhamlem1.p P=Poly1R
cayhamlem1.y Y=NMatP
cayhamlem1.r ×˙=Y
cayhamlem1.s -˙=-Y
cayhamlem1.0 0˙=0Y
cayhamlem1.t T=NmatToPolyMatR
cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cayhamlem1.e ×˙=mulGrpY
Assertion chfacfpmmulcl NFinRCRingMBsbB0sK0K×˙TM×˙GKBaseY

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A=NMatR
2 cayhamlem1.b B=BaseA
3 cayhamlem1.p P=Poly1R
4 cayhamlem1.y Y=NMatP
5 cayhamlem1.r ×˙=Y
6 cayhamlem1.s -˙=-Y
7 cayhamlem1.0 0˙=0Y
8 cayhamlem1.t T=NmatToPolyMatR
9 cayhamlem1.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 cayhamlem1.e ×˙=mulGrpY
11 crngring RCRingRRing
12 3 4 pmatring NFinRRingYRing
13 11 12 sylan2 NFinRCRingYRing
14 13 3adant3 NFinRCRingMBYRing
15 14 3ad2ant1 NFinRCRingMBsbB0sK0YRing
16 eqid mulGrpY=mulGrpY
17 eqid BaseY=BaseY
18 16 17 mgpbas BaseY=BasemulGrpY
19 16 ringmgp YRingmulGrpYMnd
20 14 19 syl NFinRCRingMBmulGrpYMnd
21 20 3ad2ant1 NFinRCRingMBsbB0sK0mulGrpYMnd
22 simp3 NFinRCRingMBsbB0sK0K0
23 8 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
24 11 23 syl3an2 NFinRCRingMBTMBaseY
25 24 3ad2ant1 NFinRCRingMBsbB0sK0TMBaseY
26 18 10 21 22 25 mulgnn0cld NFinRCRingMBsbB0sK0K×˙TMBaseY
27 1 2 3 4 5 6 7 8 9 chfacfisf NFinRRingMBsbB0sG:0BaseY
28 11 27 syl3anl2 NFinRCRingMBsbB0sG:0BaseY
29 28 3adant3 NFinRCRingMBsbB0sK0G:0BaseY
30 29 22 ffvelcdmd NFinRCRingMBsbB0sK0GKBaseY
31 17 5 ringcl YRingK×˙TMBaseYGKBaseYK×˙TM×˙GKBaseY
32 15 26 30 31 syl3anc NFinRCRingMBsbB0sK0K×˙TM×˙GKBaseY