| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chfacfisf.a |  | 
						
							| 2 |  | chfacfisf.b |  | 
						
							| 3 |  | chfacfisf.p |  | 
						
							| 4 |  | chfacfisf.y |  | 
						
							| 5 |  | chfacfisf.r |  | 
						
							| 6 |  | chfacfisf.s |  | 
						
							| 7 |  | chfacfisf.0 |  | 
						
							| 8 |  | chfacfisf.t |  | 
						
							| 9 |  | chfacfisf.g |  | 
						
							| 10 | 3 4 | pmatring |  | 
						
							| 11 | 10 | 3adant3 |  | 
						
							| 12 |  | ringgrp |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 7 | ring0cl |  | 
						
							| 17 | 11 16 | syl |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 11 | adantr |  | 
						
							| 20 | 8 1 2 3 4 | mat2pmatbas |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | 3simpa |  | 
						
							| 23 |  | elmapi |  | 
						
							| 24 | 23 | adantl |  | 
						
							| 25 |  | nnnn0 |  | 
						
							| 26 |  | nn0uz |  | 
						
							| 27 | 25 26 | eleqtrdi |  | 
						
							| 28 |  | eluzfz1 |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 24 30 | ffvelcdmd |  | 
						
							| 32 | 22 31 | anim12i |  | 
						
							| 33 |  | df-3an |  | 
						
							| 34 | 32 33 | sylibr |  | 
						
							| 35 | 8 1 2 3 4 | mat2pmatbas |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 15 5 | ringcl |  | 
						
							| 38 | 19 21 36 37 | syl3anc |  | 
						
							| 39 | 15 6 | grpsubcl |  | 
						
							| 40 | 14 18 38 39 | syl3anc |  | 
						
							| 41 | 40 | ad2antrr |  | 
						
							| 42 | 25 | adantr |  | 
						
							| 43 | 22 42 | anim12i |  | 
						
							| 44 |  | df-3an |  | 
						
							| 45 | 43 44 | sylibr |  | 
						
							| 46 |  | eluzfz2 |  | 
						
							| 47 | 27 46 | syl |  | 
						
							| 48 | 47 | anim1ci |  | 
						
							| 49 | 48 | adantl |  | 
						
							| 50 | 1 2 3 4 8 | m2pmfzmap |  | 
						
							| 51 | 45 49 50 | syl2anc |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 52 | ad2antrr |  | 
						
							| 54 | 18 | ad4antr |  | 
						
							| 55 |  | nn0re |  | 
						
							| 56 | 55 | adantl |  | 
						
							| 57 |  | peano2nn |  | 
						
							| 58 | 57 | nnred |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 | 56 59 | lenltd |  | 
						
							| 61 |  | nesym |  | 
						
							| 62 |  | ltlen |  | 
						
							| 63 | 55 58 62 | syl2anr |  | 
						
							| 64 | 63 | biimprd |  | 
						
							| 65 | 64 | expcomd |  | 
						
							| 66 | 61 65 | biimtrrid |  | 
						
							| 67 | 66 | com23 |  | 
						
							| 68 | 60 67 | sylbird |  | 
						
							| 69 | 68 | impcomd |  | 
						
							| 70 | 69 | ex |  | 
						
							| 71 | 70 | ad2antrl |  | 
						
							| 72 | 71 | imp |  | 
						
							| 73 | 72 | adantr |  | 
						
							| 74 | 10 12 | syl |  | 
						
							| 75 | 74 | 3adant3 |  | 
						
							| 76 | 75 | ad4antr |  | 
						
							| 77 | 22 | ad4antr |  | 
						
							| 78 | 24 | ad4antlr |  | 
						
							| 79 |  | neqne |  | 
						
							| 80 | 79 | anim2i |  | 
						
							| 81 |  | elnnne0 |  | 
						
							| 82 | 80 81 | sylibr |  | 
						
							| 83 |  | nnm1nn0 |  | 
						
							| 84 | 82 83 | syl |  | 
						
							| 85 | 84 | ad4ant23 |  | 
						
							| 86 | 42 | ad4antlr |  | 
						
							| 87 | 63 | simprbda |  | 
						
							| 88 | 56 | adantr |  | 
						
							| 89 |  | 1red |  | 
						
							| 90 |  | nnre |  | 
						
							| 91 | 90 | ad2antrr |  | 
						
							| 92 | 88 89 91 | lesubaddd |  | 
						
							| 93 | 87 92 | mpbird |  | 
						
							| 94 | 93 | exp31 |  | 
						
							| 95 | 94 | ad2antrl |  | 
						
							| 96 | 95 | imp |  | 
						
							| 97 | 96 | adantr |  | 
						
							| 98 | 97 | imp |  | 
						
							| 99 |  | elfz2nn0 |  | 
						
							| 100 | 85 86 98 99 | syl3anbrc |  | 
						
							| 101 | 78 100 | ffvelcdmd |  | 
						
							| 102 |  | df-3an |  | 
						
							| 103 | 77 101 102 | sylanbrc |  | 
						
							| 104 | 8 1 2 3 4 | mat2pmatbas |  | 
						
							| 105 | 103 104 | syl |  | 
						
							| 106 | 19 | ad2antrr |  | 
						
							| 107 | 21 | ad2antrr |  | 
						
							| 108 | 45 | ad2antrr |  | 
						
							| 109 |  | simprr |  | 
						
							| 110 | 109 | ad2antrr |  | 
						
							| 111 |  | simplr |  | 
						
							| 112 | 25 | ad2antrr |  | 
						
							| 113 |  | nn0z |  | 
						
							| 114 |  | nnz |  | 
						
							| 115 |  | zleltp1 |  | 
						
							| 116 | 113 114 115 | syl2anr |  | 
						
							| 117 | 116 | biimpar |  | 
						
							| 118 |  | elfz2nn0 |  | 
						
							| 119 | 111 112 117 118 | syl3anbrc |  | 
						
							| 120 | 119 | exp31 |  | 
						
							| 121 | 120 | ad2antrl |  | 
						
							| 122 | 121 | imp31 |  | 
						
							| 123 | 1 2 3 4 8 | m2pmfzmap |  | 
						
							| 124 | 108 110 122 123 | syl12anc |  | 
						
							| 125 | 15 5 | ringcl |  | 
						
							| 126 | 106 107 124 125 | syl3anc |  | 
						
							| 127 | 126 | adantlr |  | 
						
							| 128 | 15 6 | grpsubcl |  | 
						
							| 129 | 76 105 127 128 | syl3anc |  | 
						
							| 130 | 129 | ex |  | 
						
							| 131 | 73 130 | syld |  | 
						
							| 132 | 131 | impl |  | 
						
							| 133 | 54 132 | ifclda |  | 
						
							| 134 | 53 133 | ifclda |  | 
						
							| 135 | 41 134 | ifclda |  | 
						
							| 136 | 135 9 | fmptd |  |