Step |
Hyp |
Ref |
Expression |
1 |
|
chfacfisf.a |
|
2 |
|
chfacfisf.b |
|
3 |
|
chfacfisf.p |
|
4 |
|
chfacfisf.y |
|
5 |
|
chfacfisf.r |
|
6 |
|
chfacfisf.s |
|
7 |
|
chfacfisf.0 |
|
8 |
|
chfacfisf.t |
|
9 |
|
chfacfisf.g |
|
10 |
3 4
|
pmatring |
|
11 |
10
|
3adant3 |
|
12 |
|
ringgrp |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
|
eqid |
|
16 |
15 7
|
ring0cl |
|
17 |
11 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
11
|
adantr |
|
20 |
8 1 2 3 4
|
mat2pmatbas |
|
21 |
20
|
adantr |
|
22 |
|
3simpa |
|
23 |
|
elmapi |
|
24 |
23
|
adantl |
|
25 |
|
nnnn0 |
|
26 |
|
nn0uz |
|
27 |
25 26
|
eleqtrdi |
|
28 |
|
eluzfz1 |
|
29 |
27 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
24 30
|
ffvelrnd |
|
32 |
22 31
|
anim12i |
|
33 |
|
df-3an |
|
34 |
32 33
|
sylibr |
|
35 |
8 1 2 3 4
|
mat2pmatbas |
|
36 |
34 35
|
syl |
|
37 |
15 5
|
ringcl |
|
38 |
19 21 36 37
|
syl3anc |
|
39 |
15 6
|
grpsubcl |
|
40 |
14 18 38 39
|
syl3anc |
|
41 |
40
|
ad2antrr |
|
42 |
25
|
adantr |
|
43 |
22 42
|
anim12i |
|
44 |
|
df-3an |
|
45 |
43 44
|
sylibr |
|
46 |
|
eluzfz2 |
|
47 |
27 46
|
syl |
|
48 |
47
|
anim1ci |
|
49 |
48
|
adantl |
|
50 |
1 2 3 4 8
|
m2pmfzmap |
|
51 |
45 49 50
|
syl2anc |
|
52 |
51
|
adantr |
|
53 |
52
|
ad2antrr |
|
54 |
18
|
ad4antr |
|
55 |
|
nn0re |
|
56 |
55
|
adantl |
|
57 |
|
peano2nn |
|
58 |
57
|
nnred |
|
59 |
58
|
adantr |
|
60 |
56 59
|
lenltd |
|
61 |
|
nesym |
|
62 |
|
ltlen |
|
63 |
55 58 62
|
syl2anr |
|
64 |
63
|
biimprd |
|
65 |
64
|
expcomd |
|
66 |
61 65
|
syl5bir |
|
67 |
66
|
com23 |
|
68 |
60 67
|
sylbird |
|
69 |
68
|
impcomd |
|
70 |
69
|
ex |
|
71 |
70
|
ad2antrl |
|
72 |
71
|
imp |
|
73 |
72
|
adantr |
|
74 |
10 12
|
syl |
|
75 |
74
|
3adant3 |
|
76 |
75
|
ad4antr |
|
77 |
22
|
ad4antr |
|
78 |
24
|
ad4antlr |
|
79 |
|
neqne |
|
80 |
79
|
anim2i |
|
81 |
|
elnnne0 |
|
82 |
80 81
|
sylibr |
|
83 |
|
nnm1nn0 |
|
84 |
82 83
|
syl |
|
85 |
84
|
ad4ant23 |
|
86 |
42
|
ad4antlr |
|
87 |
63
|
simprbda |
|
88 |
56
|
adantr |
|
89 |
|
1red |
|
90 |
|
nnre |
|
91 |
90
|
ad2antrr |
|
92 |
88 89 91
|
lesubaddd |
|
93 |
87 92
|
mpbird |
|
94 |
93
|
exp31 |
|
95 |
94
|
ad2antrl |
|
96 |
95
|
imp |
|
97 |
96
|
adantr |
|
98 |
97
|
imp |
|
99 |
|
elfz2nn0 |
|
100 |
85 86 98 99
|
syl3anbrc |
|
101 |
78 100
|
ffvelrnd |
|
102 |
|
df-3an |
|
103 |
77 101 102
|
sylanbrc |
|
104 |
8 1 2 3 4
|
mat2pmatbas |
|
105 |
103 104
|
syl |
|
106 |
19
|
ad2antrr |
|
107 |
21
|
ad2antrr |
|
108 |
45
|
ad2antrr |
|
109 |
|
simprr |
|
110 |
109
|
ad2antrr |
|
111 |
|
simplr |
|
112 |
25
|
ad2antrr |
|
113 |
|
nn0z |
|
114 |
|
nnz |
|
115 |
|
zleltp1 |
|
116 |
113 114 115
|
syl2anr |
|
117 |
116
|
biimpar |
|
118 |
|
elfz2nn0 |
|
119 |
111 112 117 118
|
syl3anbrc |
|
120 |
119
|
exp31 |
|
121 |
120
|
ad2antrl |
|
122 |
121
|
imp31 |
|
123 |
1 2 3 4 8
|
m2pmfzmap |
|
124 |
108 110 122 123
|
syl12anc |
|
125 |
15 5
|
ringcl |
|
126 |
106 107 124 125
|
syl3anc |
|
127 |
126
|
adantlr |
|
128 |
15 6
|
grpsubcl |
|
129 |
76 105 127 128
|
syl3anc |
|
130 |
129
|
ex |
|
131 |
73 130
|
syld |
|
132 |
131
|
impl |
|
133 |
54 132
|
ifclda |
|
134 |
53 133
|
ifclda |
|
135 |
41 134
|
ifclda |
|
136 |
135 9
|
fmptd |
|