Metamath Proof Explorer


Theorem chfacfisf

Description: The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
Assertion chfacfisf N Fin R Ring M B s b B 0 s G : 0 Base Y

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 3 4 pmatring N Fin R Ring Y Ring
11 10 3adant3 N Fin R Ring M B Y Ring
12 ringgrp Y Ring Y Grp
13 11 12 syl N Fin R Ring M B Y Grp
14 13 adantr N Fin R Ring M B s b B 0 s Y Grp
15 eqid Base Y = Base Y
16 15 7 ring0cl Y Ring 0 ˙ Base Y
17 11 16 syl N Fin R Ring M B 0 ˙ Base Y
18 17 adantr N Fin R Ring M B s b B 0 s 0 ˙ Base Y
19 11 adantr N Fin R Ring M B s b B 0 s Y Ring
20 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
21 20 adantr N Fin R Ring M B s b B 0 s T M Base Y
22 3simpa N Fin R Ring M B N Fin R Ring
23 elmapi b B 0 s b : 0 s B
24 23 adantl s b B 0 s b : 0 s B
25 nnnn0 s s 0
26 nn0uz 0 = 0
27 25 26 eleqtrdi s s 0
28 eluzfz1 s 0 0 0 s
29 27 28 syl s 0 0 s
30 29 adantr s b B 0 s 0 0 s
31 24 30 ffvelrnd s b B 0 s b 0 B
32 22 31 anim12i N Fin R Ring M B s b B 0 s N Fin R Ring b 0 B
33 df-3an N Fin R Ring b 0 B N Fin R Ring b 0 B
34 32 33 sylibr N Fin R Ring M B s b B 0 s N Fin R Ring b 0 B
35 8 1 2 3 4 mat2pmatbas N Fin R Ring b 0 B T b 0 Base Y
36 34 35 syl N Fin R Ring M B s b B 0 s T b 0 Base Y
37 15 5 ringcl Y Ring T M Base Y T b 0 Base Y T M × ˙ T b 0 Base Y
38 19 21 36 37 syl3anc N Fin R Ring M B s b B 0 s T M × ˙ T b 0 Base Y
39 15 6 grpsubcl Y Grp 0 ˙ Base Y T M × ˙ T b 0 Base Y 0 ˙ - ˙ T M × ˙ T b 0 Base Y
40 14 18 38 39 syl3anc N Fin R Ring M B s b B 0 s 0 ˙ - ˙ T M × ˙ T b 0 Base Y
41 40 ad2antrr N Fin R Ring M B s b B 0 s n 0 n = 0 0 ˙ - ˙ T M × ˙ T b 0 Base Y
42 25 adantr s b B 0 s s 0
43 22 42 anim12i N Fin R Ring M B s b B 0 s N Fin R Ring s 0
44 df-3an N Fin R Ring s 0 N Fin R Ring s 0
45 43 44 sylibr N Fin R Ring M B s b B 0 s N Fin R Ring s 0
46 eluzfz2 s 0 s 0 s
47 27 46 syl s s 0 s
48 47 anim1ci s b B 0 s b B 0 s s 0 s
49 48 adantl N Fin R Ring M B s b B 0 s b B 0 s s 0 s
50 1 2 3 4 8 m2pmfzmap N Fin R Ring s 0 b B 0 s s 0 s T b s Base Y
51 45 49 50 syl2anc N Fin R Ring M B s b B 0 s T b s Base Y
52 51 adantr N Fin R Ring M B s b B 0 s n 0 T b s Base Y
53 52 ad2antrr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n = s + 1 T b s Base Y
54 18 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 s + 1 < n 0 ˙ Base Y
55 nn0re n 0 n
56 55 adantl s n 0 n
57 peano2nn s s + 1
58 57 nnred s s + 1
59 58 adantr s n 0 s + 1
60 56 59 lenltd s n 0 n s + 1 ¬ s + 1 < n
61 nesym s + 1 n ¬ n = s + 1
62 ltlen n s + 1 n < s + 1 n s + 1 s + 1 n
63 55 58 62 syl2anr s n 0 n < s + 1 n s + 1 s + 1 n
64 63 biimprd s n 0 n s + 1 s + 1 n n < s + 1
65 64 expcomd s n 0 s + 1 n n s + 1 n < s + 1
66 61 65 syl5bir s n 0 ¬ n = s + 1 n s + 1 n < s + 1
67 66 com23 s n 0 n s + 1 ¬ n = s + 1 n < s + 1
68 60 67 sylbird s n 0 ¬ s + 1 < n ¬ n = s + 1 n < s + 1
69 68 impcomd s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
70 69 ex s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
71 70 ad2antrl N Fin R Ring M B s b B 0 s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
72 71 imp N Fin R Ring M B s b B 0 s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
73 72 adantr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
74 10 12 syl N Fin R Ring Y Grp
75 74 3adant3 N Fin R Ring M B Y Grp
76 75 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 Y Grp
77 22 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 N Fin R Ring
78 24 ad4antlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 b : 0 s B
79 neqne ¬ n = 0 n 0
80 79 anim2i n 0 ¬ n = 0 n 0 n 0
81 elnnne0 n n 0 n 0
82 80 81 sylibr n 0 ¬ n = 0 n
83 nnm1nn0 n n 1 0
84 82 83 syl n 0 ¬ n = 0 n 1 0
85 84 ad4ant23 N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 0
86 42 ad4antlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 s 0
87 63 simprbda s n 0 n < s + 1 n s + 1
88 56 adantr s n 0 n < s + 1 n
89 1red s n 0 n < s + 1 1
90 nnre s s
91 90 ad2antrr s n 0 n < s + 1 s
92 88 89 91 lesubaddd s n 0 n < s + 1 n 1 s n s + 1
93 87 92 mpbird s n 0 n < s + 1 n 1 s
94 93 exp31 s n 0 n < s + 1 n 1 s
95 94 ad2antrl N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 1 s
96 95 imp N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 1 s
97 96 adantr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 s
98 97 imp N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 s
99 elfz2nn0 n 1 0 s n 1 0 s 0 n 1 s
100 85 86 98 99 syl3anbrc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 0 s
101 78 100 ffvelrnd N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 b n 1 B
102 df-3an N Fin R Ring b n 1 B N Fin R Ring b n 1 B
103 77 101 102 sylanbrc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 N Fin R Ring b n 1 B
104 8 1 2 3 4 mat2pmatbas N Fin R Ring b n 1 B T b n 1 Base Y
105 103 104 syl N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 Base Y
106 19 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 Y Ring
107 21 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 T M Base Y
108 45 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 N Fin R Ring s 0
109 simprr N Fin R Ring M B s b B 0 s b B 0 s
110 109 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 b B 0 s
111 simplr s n 0 n < s + 1 n 0
112 25 ad2antrr s n 0 n < s + 1 s 0
113 nn0z n 0 n
114 nnz s s
115 zleltp1 n s n s n < s + 1
116 113 114 115 syl2anr s n 0 n s n < s + 1
117 116 biimpar s n 0 n < s + 1 n s
118 elfz2nn0 n 0 s n 0 s 0 n s
119 111 112 117 118 syl3anbrc s n 0 n < s + 1 n 0 s
120 119 exp31 s n 0 n < s + 1 n 0 s
121 120 ad2antrl N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 0 s
122 121 imp31 N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 0 s
123 1 2 3 4 8 m2pmfzmap N Fin R Ring s 0 b B 0 s n 0 s T b n Base Y
124 108 110 122 123 syl12anc N Fin R Ring M B s b B 0 s n 0 n < s + 1 T b n Base Y
125 15 5 ringcl Y Ring T M Base Y T b n Base Y T M × ˙ T b n Base Y
126 106 107 124 125 syl3anc N Fin R Ring M B s b B 0 s n 0 n < s + 1 T M × ˙ T b n Base Y
127 126 adantlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T M × ˙ T b n Base Y
128 15 6 grpsubcl Y Grp T b n 1 Base Y T M × ˙ T b n Base Y T b n 1 - ˙ T M × ˙ T b n Base Y
129 76 105 127 128 syl3anc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 - ˙ T M × ˙ T b n Base Y
130 129 ex N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 - ˙ T M × ˙ T b n Base Y
131 73 130 syld N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 - ˙ T M × ˙ T b n Base Y
132 131 impl N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 - ˙ T M × ˙ T b n Base Y
133 54 132 ifclda N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n Base Y
134 53 133 ifclda N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n Base Y
135 41 134 ifclda N Fin R Ring M B s b B 0 s n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n Base Y
136 135 9 fmptd N Fin R Ring M B s b B 0 s G : 0 Base Y