Metamath Proof Explorer


Theorem chordthmlem3

Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ2 = QM2 + PM2. This follows from chordthmlem2 and the Pythagorean theorem ( pythag ) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem3.A φA
chordthmlem3.B φB
chordthmlem3.Q φQ
chordthmlem3.X φX
chordthmlem3.M φM=A+B2
chordthmlem3.P φP=XA+1XB
chordthmlem3.ABequidistQ φAQ=BQ
Assertion chordthmlem3 φPQ2=QM2+PM2

Proof

Step Hyp Ref Expression
1 chordthmlem3.A φA
2 chordthmlem3.B φB
3 chordthmlem3.Q φQ
4 chordthmlem3.X φX
5 chordthmlem3.M φM=A+B2
6 chordthmlem3.P φP=XA+1XB
7 chordthmlem3.ABequidistQ φAQ=BQ
8 1 2 addcld φA+B
9 8 halfcld φA+B2
10 5 9 eqeltrd φM
11 3 10 subcld φQM
12 11 abscld φQM
13 12 recnd φQM
14 13 sqcld φQM2
15 14 adantr φP=MQM2
16 15 addridd φP=MQM2+0=QM2
17 4 recnd φX
18 17 1 mulcld φXA
19 1cnd φ1
20 19 17 subcld φ1X
21 20 2 mulcld φ1XB
22 18 21 addcld φXA+1XB
23 6 22 eqeltrd φP
24 23 adantr φP=MP
25 simpr φP=MP=M
26 24 25 subeq0bd φP=MPM=0
27 26 abs00bd φP=MPM=0
28 27 sq0id φP=MPM2=0
29 28 oveq2d φP=MQM2+PM2=QM2+0
30 3 adantr φP=MQ
31 30 24 abssubd φP=MQP=PQ
32 25 oveq2d φP=MQP=QM
33 32 fveq2d φP=MQP=QM
34 31 33 eqtr3d φP=MPQ=QM
35 34 oveq1d φP=MPQ2=QM2
36 16 29 35 3eqtr4rd φP=MPQ2=QM2+PM2
37 23 10 subcld φPM
38 37 abscld φPM
39 38 recnd φPM
40 39 sqcld φPM2
41 40 adantr φQ=MPM2
42 41 addlidd φQ=M0+PM2=PM2
43 3 adantr φQ=MQ
44 simpr φQ=MQ=M
45 43 44 subeq0bd φQ=MQM=0
46 45 abs00bd φQ=MQM=0
47 46 sq0id φQ=MQM2=0
48 47 oveq1d φQ=MQM2+PM2=0+PM2
49 44 oveq2d φQ=MPQ=PM
50 49 fveq2d φQ=MPQ=PM
51 50 oveq1d φQ=MPQ2=PM2
52 42 48 51 3eqtr4rd φQ=MPQ2=QM2+PM2
53 23 adantr φPMQMP
54 3 adantr φPMQMQ
55 10 adantr φPMQMM
56 simprl φPMQMPM
57 simprr φPMQMQM
58 eqid x0,y0logyx=x0,y0logyx
59 1 adantr φPMQMA
60 2 adantr φPMQMB
61 4 adantr φPMQMX
62 5 adantr φPMQMM=A+B2
63 6 adantr φPMQMP=XA+1XB
64 7 adantr φPMQMAQ=BQ
65 58 59 60 54 61 62 63 64 56 57 chordthmlem2 φPMQMQMx0,y0logyxPMπ2π2
66 eqid QM=QM
67 eqid PM=PM
68 eqid PQ=PQ
69 eqid QMx0,y0logyxPM=QMx0,y0logyxPM
70 58 66 67 68 69 pythag PQMPMQMQMx0,y0logyxPMπ2π2PQ2=QM2+PM2
71 53 54 55 56 57 65 70 syl321anc φPMQMPQ2=QM2+PM2
72 36 52 71 pm2.61da2ne φPQ2=QM2+PM2