| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnregcld.1 |
|
| 2 |
1
|
clscld |
|
| 3 |
|
eqcom |
|
| 4 |
3
|
biimpi |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
rspceeqv |
|
| 7 |
2 4 6
|
syl2an |
|
| 8 |
7
|
ex |
|
| 9 |
|
cldrcl |
|
| 10 |
1
|
cldss |
|
| 11 |
1
|
ntrss2 |
|
| 12 |
9 10 11
|
syl2anc |
|
| 13 |
1
|
clsss2 |
|
| 14 |
12 13
|
mpdan |
|
| 15 |
1
|
ntrss |
|
| 16 |
9 10 14 15
|
syl3anc |
|
| 17 |
1
|
ntridm |
|
| 18 |
9 10 17
|
syl2anc |
|
| 19 |
1
|
ntrss3 |
|
| 20 |
9 10 19
|
syl2anc |
|
| 21 |
1
|
clsss3 |
|
| 22 |
9 20 21
|
syl2anc |
|
| 23 |
1
|
sscls |
|
| 24 |
9 20 23
|
syl2anc |
|
| 25 |
1
|
ntrss |
|
| 26 |
9 22 24 25
|
syl3anc |
|
| 27 |
18 26
|
eqsstrrd |
|
| 28 |
16 27
|
eqssd |
|
| 29 |
28
|
adantl |
|
| 30 |
|
2fveq3 |
|
| 31 |
|
id |
|
| 32 |
30 31
|
eqeq12d |
|
| 33 |
29 32
|
syl5ibrcom |
|
| 34 |
33
|
rexlimdva |
|
| 35 |
8 34
|
impbid |
|