Metamath Proof Explorer


Theorem climf

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . Similar to clim , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses climf.nf _kF
climf.f φFV
climf.fv φkFk=B
Assertion climf φFAAx+jkjBBA<x

Proof

Step Hyp Ref Expression
1 climf.nf _kF
2 climf.f φFV
3 climf.fv φkFk=B
4 climrel Rel
5 4 brrelex2i FAAV
6 5 a1i φFAAV
7 elex AAV
8 7 adantr Ax+jkjFkFkA<xAV
9 8 a1i φAx+jkjFkFkA<xAV
10 simpr f=Fy=Ay=A
11 10 eleq1d f=Fy=AyA
12 nfv xf=Fy=A
13 1 nfeq2 kf=F
14 nfv ky=A
15 13 14 nfan kf=Fy=A
16 fveq1 f=Ffk=Fk
17 16 adantr f=Fy=Afk=Fk
18 17 eleq1d f=Fy=AfkFk
19 oveq12 fk=Fky=Afky=FkA
20 16 19 sylan f=Fy=Afky=FkA
21 20 fveq2d f=Fy=Afky=FkA
22 21 breq1d f=Fy=Afky<xFkA<x
23 18 22 anbi12d f=Fy=Afkfky<xFkFkA<x
24 15 23 ralbid f=Fy=Akjfkfky<xkjFkFkA<x
25 24 rexbidv f=Fy=Ajkjfkfky<xjkjFkFkA<x
26 12 25 ralbid f=Fy=Ax+jkjfkfky<xx+jkjFkFkA<x
27 11 26 anbi12d f=Fy=Ayx+jkjfkfky<xAx+jkjFkFkA<x
28 df-clim =fy|yx+jkjfkfky<x
29 27 28 brabga FVAVFAAx+jkjFkFkA<x
30 29 ex FVAVFAAx+jkjFkFkA<x
31 2 30 syl φAVFAAx+jkjFkFkA<x
32 6 9 31 pm5.21ndd φFAAx+jkjFkFkA<x
33 eluzelz kjk
34 3 eleq1d φkFkB
35 3 fvoveq1d φkFkA=BA
36 35 breq1d φkFkA<xBA<x
37 34 36 anbi12d φkFkFkA<xBBA<x
38 33 37 sylan2 φkjFkFkA<xBBA<x
39 38 ralbidva φkjFkFkA<xkjBBA<x
40 39 rexbidv φjkjFkFkA<xjkjBBA<x
41 40 ralbidv φx+jkjFkFkA<xx+jkjBBA<x
42 41 anbi2d φAx+jkjFkFkA<xAx+jkjBBA<x
43 32 42 bitrd φFAAx+jkjBBA<x