Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climisp.m | |
|
climisp.z | |
||
climisp.f | |
||
climisp.c | |
||
climisp.x | |
||
climisp.l | |
||
Assertion | climisp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climisp.m | |
|
2 | climisp.z | |
|
3 | climisp.f | |
|
4 | climisp.c | |
|
5 | climisp.x | |
|
6 | climisp.l | |
|
7 | nfv | |
|
8 | nfra1 | |
|
9 | 7 8 | nfan | |
10 | simplll | |
|
11 | 2 | uztrn2 | |
12 | 11 | ad4ant24 | |
13 | rspa | |
|
14 | 13 | simprd | |
15 | 14 | adantll | |
16 | simpl3 | |
|
17 | neqne | |
|
18 | 5 | rpred | |
19 | 18 | ad2antrr | |
20 | 3 | ffvelcdmda | |
21 | 2 | fvexi | |
22 | 21 | a1i | |
23 | 3 22 | fexd | |
24 | eqidd | |
|
25 | 23 24 | clim | |
26 | 4 25 | mpbid | |
27 | 26 | simpld | |
28 | 27 | adantr | |
29 | 20 28 | subcld | |
30 | 29 | abscld | |
31 | 30 | adantr | |
32 | 6 | 3expa | |
33 | 19 31 32 | lensymd | |
34 | 17 33 | sylan2 | |
35 | 34 | 3adantl3 | |
36 | 16 35 | condan | |
37 | 10 12 15 36 | syl3anc | |
38 | 9 37 | ralrimia | |
39 | breq2 | |
|
40 | 39 | anbi2d | |
41 | 40 | rexralbidv | |
42 | 26 | simprd | |
43 | 41 42 5 | rspcdva | |
44 | 2 | rexuz3 | |
45 | 1 44 | syl | |
46 | 43 45 | mpbird | |
47 | 38 46 | reximddv3 | |