Metamath Proof Explorer


Theorem climisp

Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climisp.m φM
climisp.z Z=M
climisp.f φF:Z
climisp.c φFA
climisp.x φX+
climisp.l φkZFkAXFkA
Assertion climisp φjZkjFk=A

Proof

Step Hyp Ref Expression
1 climisp.m φM
2 climisp.z Z=M
3 climisp.f φF:Z
4 climisp.c φFA
5 climisp.x φX+
6 climisp.l φkZFkAXFkA
7 nfv kφjZ
8 nfra1 kkjFkFkA<X
9 7 8 nfan kφjZkjFkFkA<X
10 simplll φjZkjFkFkA<Xkjφ
11 2 uztrn2 jZkjkZ
12 11 ad4ant24 φjZkjFkFkA<XkjkZ
13 rspa kjFkFkA<XkjFkFkA<X
14 13 simprd kjFkFkA<XkjFkA<X
15 14 adantll φjZkjFkFkA<XkjFkA<X
16 simpl3 φkZFkA<X¬Fk=AFkA<X
17 neqne ¬Fk=AFkA
18 5 rpred φX
19 18 ad2antrr φkZFkAX
20 3 ffvelcdmda φkZFk
21 2 fvexi ZV
22 21 a1i φZV
23 3 22 fexd φFV
24 eqidd φkFk=Fk
25 23 24 clim φFAAx+jkjFkFkA<x
26 4 25 mpbid φAx+jkjFkFkA<x
27 26 simpld φA
28 27 adantr φkZA
29 20 28 subcld φkZFkA
30 29 abscld φkZFkA
31 30 adantr φkZFkAFkA
32 6 3expa φkZFkAXFkA
33 19 31 32 lensymd φkZFkA¬FkA<X
34 17 33 sylan2 φkZ¬Fk=A¬FkA<X
35 34 3adantl3 φkZFkA<X¬Fk=A¬FkA<X
36 16 35 condan φkZFkA<XFk=A
37 10 12 15 36 syl3anc φjZkjFkFkA<XkjFk=A
38 9 37 ralrimia φjZkjFkFkA<XkjFk=A
39 breq2 x=XFkA<xFkA<X
40 39 anbi2d x=XFkFkA<xFkFkA<X
41 40 rexralbidv x=XjkjFkFkA<xjkjFkFkA<X
42 26 simprd φx+jkjFkFkA<x
43 41 42 5 rspcdva φjkjFkFkA<X
44 2 rexuz3 MjZkjFkFkA<XjkjFkFkA<X
45 1 44 syl φjZkjFkFkA<XjkjFkFkA<X
46 43 45 mpbird φjZkjFkFkA<X
47 38 46 reximddv3 φjZkjFk=A