Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999) (Proof shortened by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | climuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z | |
|
2 | nnuz | |
|
3 | 1zzd | |
|
4 | climcl | |
|
5 | 4 | 3ad2ant1 | |
6 | climcl | |
|
7 | 6 | 3ad2ant2 | |
8 | 5 7 | subcld | |
9 | simp3 | |
|
10 | 5 7 9 | subne0d | |
11 | 8 10 | absrpcld | |
12 | 11 | rphalfcld | |
13 | eqidd | |
|
14 | simp1 | |
|
15 | 2 3 12 13 14 | climi | |
16 | simp2 | |
|
17 | 2 3 12 13 16 | climi | |
18 | 2 | rexanuz2 | |
19 | 15 17 18 | sylanbrc | |
20 | nnz | |
|
21 | uzid | |
|
22 | ne0i | |
|
23 | r19.2z | |
|
24 | 23 | ex | |
25 | 20 21 22 24 | 4syl | |
26 | simpr | |
|
27 | simpll | |
|
28 | 26 27 | abssubd | |
29 | 28 | breq1d | |
30 | simplr | |
|
31 | subcl | |
|
32 | 31 | adantr | |
33 | 32 | abscld | |
34 | abs3lem | |
|
35 | 27 30 26 33 34 | syl22anc | |
36 | 33 | ltnrd | |
37 | 36 | pm2.21d | |
38 | 35 37 | syld | |
39 | 38 | expd | |
40 | 29 39 | sylbid | |
41 | 40 | impr | |
42 | 41 | adantld | |
43 | 42 | expimpd | |
44 | 43 | rexlimdvw | |
45 | 25 44 | sylan9r | |
46 | 45 | rexlimdva | |
47 | 5 7 46 | syl2anc | |
48 | 19 47 | mpd | |
49 | 48 | 3expia | |
50 | 49 | necon4ad | |
51 | 1 50 | mpi | |