Metamath Proof Explorer


Theorem climuni

Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999) (Proof shortened by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climuni FAFBA=B

Proof

Step Hyp Ref Expression
1 1z 1
2 nnuz =1
3 1zzd FAFBAB1
4 climcl FAA
5 4 3ad2ant1 FAFBABA
6 climcl FBB
7 6 3ad2ant2 FAFBABB
8 5 7 subcld FAFBABAB
9 simp3 FAFBABAB
10 5 7 9 subne0d FAFBABAB0
11 8 10 absrpcld FAFBABAB+
12 11 rphalfcld FAFBABAB2+
13 eqidd FAFBABkFk=Fk
14 simp1 FAFBABFA
15 2 3 12 13 14 climi FAFBABjkjFkFkA<AB2
16 simp2 FAFBABFB
17 2 3 12 13 16 climi FAFBABjkjFkFkB<AB2
18 2 rexanuz2 jkjFkFkA<AB2FkFkB<AB2jkjFkFkA<AB2jkjFkFkB<AB2
19 15 17 18 sylanbrc FAFBABjkjFkFkA<AB2FkFkB<AB2
20 nnz jj
21 uzid jjj
22 ne0i jjj
23 r19.2z jkjFkFkA<AB2FkFkB<AB2kjFkFkA<AB2FkFkB<AB2
24 23 ex jkjFkFkA<AB2FkFkB<AB2kjFkFkA<AB2FkFkB<AB2
25 20 21 22 24 4syl jkjFkFkA<AB2FkFkB<AB2kjFkFkA<AB2FkFkB<AB2
26 simpr ABFkFk
27 simpll ABFkA
28 26 27 abssubd ABFkFkA=AFk
29 28 breq1d ABFkFkA<AB2AFk<AB2
30 simplr ABFkB
31 subcl ABAB
32 31 adantr ABFkAB
33 32 abscld ABFkAB
34 abs3lem ABFkABAFk<AB2FkB<AB2AB<AB
35 27 30 26 33 34 syl22anc ABFkAFk<AB2FkB<AB2AB<AB
36 33 ltnrd ABFk¬AB<AB
37 36 pm2.21d ABFkAB<AB¬1
38 35 37 syld ABFkAFk<AB2FkB<AB2¬1
39 38 expd ABFkAFk<AB2FkB<AB2¬1
40 29 39 sylbid ABFkFkA<AB2FkB<AB2¬1
41 40 impr ABFkFkA<AB2FkB<AB2¬1
42 41 adantld ABFkFkA<AB2FkFkB<AB2¬1
43 42 expimpd ABFkFkA<AB2FkFkB<AB2¬1
44 43 rexlimdvw ABkjFkFkA<AB2FkFkB<AB2¬1
45 25 44 sylan9r ABjkjFkFkA<AB2FkFkB<AB2¬1
46 45 rexlimdva ABjkjFkFkA<AB2FkFkB<AB2¬1
47 5 7 46 syl2anc FAFBABjkjFkFkA<AB2FkFkB<AB2¬1
48 19 47 mpd FAFBAB¬1
49 48 3expia FAFBAB¬1
50 49 necon4ad FAFB1A=B
51 1 50 mpi FAFBA=B