| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|
| 2 |
|
nnuz |
|
| 3 |
|
1zzd |
|
| 4 |
|
climcl |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
|
climcl |
|
| 7 |
6
|
3ad2ant2 |
|
| 8 |
5 7
|
subcld |
|
| 9 |
|
simp3 |
|
| 10 |
5 7 9
|
subne0d |
|
| 11 |
8 10
|
absrpcld |
|
| 12 |
11
|
rphalfcld |
|
| 13 |
|
eqidd |
|
| 14 |
|
simp1 |
|
| 15 |
2 3 12 13 14
|
climi |
|
| 16 |
|
simp2 |
|
| 17 |
2 3 12 13 16
|
climi |
|
| 18 |
2
|
rexanuz2 |
|
| 19 |
15 17 18
|
sylanbrc |
|
| 20 |
|
nnz |
|
| 21 |
|
uzid |
|
| 22 |
|
ne0i |
|
| 23 |
|
r19.2z |
|
| 24 |
23
|
ex |
|
| 25 |
20 21 22 24
|
4syl |
|
| 26 |
|
simpr |
|
| 27 |
|
simpll |
|
| 28 |
26 27
|
abssubd |
|
| 29 |
28
|
breq1d |
|
| 30 |
|
simplr |
|
| 31 |
|
subcl |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
abscld |
|
| 34 |
|
abs3lem |
|
| 35 |
27 30 26 33 34
|
syl22anc |
|
| 36 |
33
|
ltnrd |
|
| 37 |
36
|
pm2.21d |
|
| 38 |
35 37
|
syld |
|
| 39 |
38
|
expd |
|
| 40 |
29 39
|
sylbid |
|
| 41 |
40
|
impr |
|
| 42 |
41
|
adantld |
|
| 43 |
42
|
expimpd |
|
| 44 |
43
|
rexlimdvw |
|
| 45 |
25 44
|
sylan9r |
|
| 46 |
45
|
rexlimdva |
|
| 47 |
5 7 46
|
syl2anc |
|
| 48 |
19 47
|
mpd |
|
| 49 |
48
|
3expia |
|
| 50 |
49
|
necon4ad |
|
| 51 |
1 50
|
mpi |
|