Metamath Proof Explorer


Theorem climuzlem

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climuzlem.1 φ M
climuzlem.2 Z = M
climuzlem.3 φ F : Z
Assertion climuzlem φ F A A x + j Z k j F k A < x

Proof

Step Hyp Ref Expression
1 climuzlem.1 φ M
2 climuzlem.2 Z = M
3 climuzlem.3 φ F : Z
4 climcl F A A
5 4 adantl φ F A A
6 id F A F A
7 climrel Rel
8 7 brrelex1i F A F V
9 eqidd F A k F k = F k
10 8 9 clim F A F A A x + j k j F k F k A < x
11 6 10 mpbid F A A x + j k j F k F k A < x
12 11 simprd F A x + j k j F k F k A < x
13 12 adantl φ F A x + j k j F k F k A < x
14 simpr φ j k j F k F k A < x j k j F k F k A < x
15 2 rexuz3 M j Z k j F k F k A < x j k j F k F k A < x
16 1 15 syl φ j Z k j F k F k A < x j k j F k F k A < x
17 16 adantr φ j k j F k F k A < x j Z k j F k F k A < x j k j F k F k A < x
18 14 17 mpbird φ j k j F k F k A < x j Z k j F k F k A < x
19 simpr F k F k A < x F k A < x
20 19 ralimi k j F k F k A < x k j F k A < x
21 20 reximi j Z k j F k F k A < x j Z k j F k A < x
22 21 a1i φ j k j F k F k A < x j Z k j F k F k A < x j Z k j F k A < x
23 18 22 mpd φ j k j F k F k A < x j Z k j F k A < x
24 23 ex φ j k j F k F k A < x j Z k j F k A < x
25 24 adantr φ x + j k j F k F k A < x j Z k j F k A < x
26 25 ralimdva φ x + j k j F k F k A < x x + j Z k j F k A < x
27 26 adantr φ F A x + j k j F k F k A < x x + j Z k j F k A < x
28 13 27 mpd φ F A x + j Z k j F k A < x
29 5 28 jca φ F A A x + j Z k j F k A < x
30 simprl φ A x + j Z k j F k A < x A
31 nfv j φ
32 nfre1 j j k j F k F k A < x
33 2 uzssz2 Z
34 33 sseli j Z j
35 34 3ad2ant2 φ j Z k j F k A < x j
36 simpll φ j Z k j φ
37 2 uztrn2 j Z k j k Z
38 37 adantll φ j Z k j k Z
39 3 ffvelrnda φ k Z F k
40 36 38 39 syl2anc φ j Z k j F k
41 40 adantr φ j Z k j F k A < x F k
42 simpr φ j Z k j F k A < x F k A < x
43 41 42 jca φ j Z k j F k A < x F k F k A < x
44 43 ex φ j Z k j F k A < x F k F k A < x
45 44 ralimdva φ j Z k j F k A < x k j F k F k A < x
46 45 3impia φ j Z k j F k A < x k j F k F k A < x
47 rspe j k j F k F k A < x j k j F k F k A < x
48 35 46 47 syl2anc φ j Z k j F k A < x j k j F k F k A < x
49 48 3exp φ j Z k j F k A < x j k j F k F k A < x
50 31 32 49 rexlimd φ j Z k j F k A < x j k j F k F k A < x
51 50 ralimdv φ x + j Z k j F k A < x x + j k j F k F k A < x
52 51 imp φ x + j Z k j F k A < x x + j k j F k F k A < x
53 52 adantrl φ A x + j Z k j F k A < x x + j k j F k F k A < x
54 30 53 jca φ A x + j Z k j F k A < x A x + j k j F k F k A < x
55 2 fvexi Z V
56 55 a1i φ Z V
57 3 56 fexd φ F V
58 eqidd φ k F k = F k
59 57 58 clim φ F A A x + j k j F k F k A < x
60 59 adantr φ A x + j Z k j F k A < x F A A x + j k j F k F k A < x
61 54 60 mpbird φ A x + j Z k j F k A < x F A
62 29 61 impbida φ F A A x + j Z k j F k A < x