Metamath Proof Explorer


Theorem climxlim2

Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +oo and -oo could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2.m φM
climxlim2.z Z=M
climxlim2.f φF:Z*
climxlim2.a φFA
Assertion climxlim2 φF*A

Proof

Step Hyp Ref Expression
1 climxlim2.m φM
2 climxlim2.z Z=M
3 climxlim2.f φF:Z*
4 climxlim2.a φFA
5 2 eluzelz2 jZj
6 5 ad2antlr φjZFj:jj
7 eqid j=j
8 3 adantr φjZF:Z*
9 2 uzssd3 jZjZ
10 9 adantl φjZjZ
11 8 10 fssresd φjZFj:j*
12 11 adantr φjZFj:jFj:j*
13 simpr φjZFj:jFj:j
14 4 adantr φjZFA
15 2 fvexi ZV
16 15 a1i φZV
17 3 16 fexd φFV
18 climres jFVFjAFA
19 5 17 18 syl2anr φjZFjAFA
20 14 19 mpbird φjZFjA
21 20 adantr φjZFj:jFjA
22 6 7 12 13 21 climxlim2lem φjZFj:jFj*A
23 2 3 fuzxrpmcn φF*𝑝𝑚
24 23 adantr φjZF*𝑝𝑚
25 5 adantl φjZj
26 24 25 xlimres φjZF*AFj*A
27 26 adantr φjZFj:jF*AFj*A
28 22 27 mpbird φjZFj:jF*A
29 3 ffnd φFFnZ
30 climcl FAA
31 4 30 syl φA
32 breldmg FVAFAFdom
33 17 31 4 32 syl3anc φFdom
34 1 2 29 33 climrescn φjZFj:j
35 28 34 r19.29a φF*A