Metamath Proof Explorer


Theorem climxlim2

Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +oo and -oo could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses climxlim2.m φ M
climxlim2.z Z = M
climxlim2.f φ F : Z *
climxlim2.a φ F A
Assertion climxlim2 φ F * A

Proof

Step Hyp Ref Expression
1 climxlim2.m φ M
2 climxlim2.z Z = M
3 climxlim2.f φ F : Z *
4 climxlim2.a φ F A
5 2 eluzelz2 j Z j
6 5 ad2antlr φ j Z F j : j j
7 eqid j = j
8 3 adantr φ j Z F : Z *
9 2 uzssd3 j Z j Z
10 9 adantl φ j Z j Z
11 8 10 fssresd φ j Z F j : j *
12 11 adantr φ j Z F j : j F j : j *
13 simpr φ j Z F j : j F j : j
14 4 adantr φ j Z F A
15 2 fvexi Z V
16 15 a1i φ Z V
17 3 16 fexd φ F V
18 climres j F V F j A F A
19 5 17 18 syl2anr φ j Z F j A F A
20 14 19 mpbird φ j Z F j A
21 20 adantr φ j Z F j : j F j A
22 6 7 12 13 21 climxlim2lem φ j Z F j : j F j * A
23 2 3 fuzxrpmcn φ F * 𝑝𝑚
24 23 adantr φ j Z F * 𝑝𝑚
25 5 adantl φ j Z j
26 24 25 xlimres φ j Z F * A F j * A
27 26 adantr φ j Z F j : j F * A F j * A
28 22 27 mpbird φ j Z F j : j F * A
29 3 ffnd φ F Fn Z
30 climcl F A A
31 4 30 syl φ A
32 breldmg F V A F A F dom
33 17 31 4 32 syl3anc φ F dom
34 1 2 29 33 climrescn φ j Z F j : j
35 28 34 r19.29a φ F * A