Description: A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +oo and -oo could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climxlim2.m | |
|
climxlim2.z | |
||
climxlim2.f | |
||
climxlim2.a | |
||
Assertion | climxlim2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climxlim2.m | |
|
2 | climxlim2.z | |
|
3 | climxlim2.f | |
|
4 | climxlim2.a | |
|
5 | 2 | eluzelz2 | |
6 | 5 | ad2antlr | |
7 | eqid | |
|
8 | 3 | adantr | |
9 | 2 | uzssd3 | |
10 | 9 | adantl | |
11 | 8 10 | fssresd | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 4 | adantr | |
15 | 2 | fvexi | |
16 | 15 | a1i | |
17 | 3 16 | fexd | |
18 | climres | |
|
19 | 5 17 18 | syl2anr | |
20 | 14 19 | mpbird | |
21 | 20 | adantr | |
22 | 6 7 12 13 21 | climxlim2lem | |
23 | 2 3 | fuzxrpmcn | |
24 | 23 | adantr | |
25 | 5 | adantl | |
26 | 24 25 | xlimres | |
27 | 26 | adantr | |
28 | 22 27 | mpbird | |
29 | 3 | ffnd | |
30 | climcl | |
|
31 | 4 30 | syl | |
32 | breldmg | |
|
33 | 17 31 4 32 | syl3anc | |
34 | 1 2 29 33 | climrescn | |
35 | 28 34 | r19.29a | |