Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | clsconn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll3 | |
|
2 | simpll1 | |
|
3 | simpll2 | |
|
4 | simplrl | |
|
5 | simplrr | |
|
6 | simprl1 | |
|
7 | n0 | |
|
8 | 6 7 | sylib | |
9 | 2 | adantr | |
10 | topontop | |
|
11 | 9 10 | syl | |
12 | 3 | adantr | |
13 | toponuni | |
|
14 | 9 13 | syl | |
15 | 12 14 | sseqtrd | |
16 | simpr | |
|
17 | 16 | elin2d | |
18 | 4 | adantr | |
19 | 16 | elin1d | |
20 | eqid | |
|
21 | 20 | clsndisj | |
22 | 11 15 17 18 19 21 | syl32anc | |
23 | 8 22 | exlimddv | |
24 | simprl2 | |
|
25 | n0 | |
|
26 | 24 25 | sylib | |
27 | 2 | adantr | |
28 | 27 10 | syl | |
29 | 3 | adantr | |
30 | 27 13 | syl | |
31 | 29 30 | sseqtrd | |
32 | simpr | |
|
33 | 32 | elin2d | |
34 | 5 | adantr | |
35 | 32 | elin1d | |
36 | 20 | clsndisj | |
37 | 28 31 33 34 35 36 | syl32anc | |
38 | 26 37 | exlimddv | |
39 | simprl3 | |
|
40 | 2 10 | syl | |
41 | 2 13 | syl | |
42 | 3 41 | sseqtrd | |
43 | 20 | sscls | |
44 | 40 42 43 | syl2anc | |
45 | 44 | sscond | |
46 | 39 45 | sstrd | |
47 | ssv | |
|
48 | ssdif | |
|
49 | 47 48 | ax-mp | |
50 | 46 49 | sstrdi | |
51 | disj2 | |
|
52 | 50 51 | sylibr | |
53 | simprr | |
|
54 | 44 53 | sstrd | |
55 | 2 3 4 5 23 38 52 54 | nconnsubb | |
56 | 55 | expr | |
57 | 1 56 | mt2d | |
58 | 57 | ex | |
59 | 58 | ralrimivva | |
60 | simp1 | |
|
61 | 13 | sseq2d | |
62 | 61 | biimpa | |
63 | 20 | clsss3 | |
64 | 10 62 63 | syl2an2r | |
65 | 13 | adantr | |
66 | 64 65 | sseqtrrd | |
67 | 66 | 3adant3 | |
68 | connsub | |
|
69 | 60 67 68 | syl2anc | |
70 | 59 69 | mpbird | |