Metamath Proof Explorer


Theorem clsk1indlem1

Description: The ansatz closure function ( r e. ~P 3o |-> if ( r = { (/) } , { (/) , 1o } , r ) ) does not have the K1 property of isotony. (Contributed by RP, 6-Jul-2021)

Ref Expression
Hypothesis clsk1indlem.k K=r𝒫3𝑜ifr=1𝑜r
Assertion clsk1indlem1 s𝒫3𝑜t𝒫3𝑜st¬KsKt

Proof

Step Hyp Ref Expression
1 clsk1indlem.k K=r𝒫3𝑜ifr=1𝑜r
2 tpex 1𝑜2𝑜V
3 snsstp1 1𝑜2𝑜
4 2 3 elpwi2 𝒫1𝑜2𝑜
5 df3o2 3𝑜=1𝑜2𝑜
6 5 pweqi 𝒫3𝑜=𝒫1𝑜2𝑜
7 4 6 eleqtrri 𝒫3𝑜
8 2 a1i 1𝑜2𝑜V
9 3 a1i 1𝑜2𝑜
10 0ex V
11 10 snss 1𝑜2𝑜1𝑜2𝑜
12 9 11 sylibr 1𝑜2𝑜
13 snsstp3 2𝑜1𝑜2𝑜
14 13 a1i 2𝑜1𝑜2𝑜
15 2oex 2𝑜V
16 15 snss 2𝑜1𝑜2𝑜2𝑜1𝑜2𝑜
17 14 16 sylibr 2𝑜1𝑜2𝑜
18 12 17 prssd 2𝑜1𝑜2𝑜
19 8 18 sselpwd 2𝑜𝒫1𝑜2𝑜
20 19 mptru 2𝑜𝒫1𝑜2𝑜
21 20 6 eleqtrri 2𝑜𝒫3𝑜
22 simpl 𝒫3𝑜2𝑜𝒫3𝑜𝒫3𝑜
23 sseq1 s=stt
24 fveq2 s=Ks=K
25 24 sseq1d s=KsKtKKt
26 25 notbid s=¬KsKt¬KKt
27 23 26 anbi12d s=st¬KsKtt¬KKt
28 27 rexbidv s=t𝒫3𝑜st¬KsKtt𝒫3𝑜t¬KKt
29 28 adantl 𝒫3𝑜2𝑜𝒫3𝑜s=t𝒫3𝑜st¬KsKtt𝒫3𝑜t¬KKt
30 simpr 𝒫3𝑜2𝑜𝒫3𝑜2𝑜𝒫3𝑜
31 fveq2 t=2𝑜Kt=K2𝑜
32 31 sseq2d t=2𝑜KKtKK2𝑜
33 32 notbid t=2𝑜¬KKt¬KK2𝑜
34 33 cleq2lem t=2𝑜t¬KKt2𝑜¬KK2𝑜
35 34 adantl 𝒫3𝑜2𝑜𝒫3𝑜t=2𝑜t¬KKt2𝑜¬KK2𝑜
36 1oex 1𝑜V
37 36 prid2 1𝑜1𝑜
38 iftrue r=ifr=1𝑜r=1𝑜
39 prex 1𝑜V
40 38 1 39 fvmpt 𝒫3𝑜K=1𝑜
41 40 adantr 𝒫3𝑜2𝑜𝒫3𝑜K=1𝑜
42 37 41 eleqtrrid 𝒫3𝑜2𝑜𝒫3𝑜1𝑜K
43 1n0 1𝑜
44 43 neii ¬1𝑜=
45 eqcom 1𝑜=2𝑜2𝑜=1𝑜
46 df-2o 2𝑜=suc1𝑜
47 df-1o 1𝑜=suc
48 46 47 eqeq12i 2𝑜=1𝑜suc1𝑜=suc
49 suc11reg suc1𝑜=suc1𝑜=
50 45 48 49 3bitri 1𝑜=2𝑜1𝑜=
51 43 50 nemtbir ¬1𝑜=2𝑜
52 44 51 pm3.2ni ¬1𝑜=1𝑜=2𝑜
53 elpri 1𝑜2𝑜1𝑜=1𝑜=2𝑜
54 52 53 mto ¬1𝑜2𝑜
55 54 a1i 𝒫3𝑜2𝑜𝒫3𝑜¬1𝑜2𝑜
56 eqeq1 r=2𝑜r=2𝑜=
57 id r=2𝑜r=2𝑜
58 56 57 ifbieq2d r=2𝑜ifr=1𝑜r=if2𝑜=1𝑜2𝑜
59 15 prid2 2𝑜2𝑜
60 2on0 2𝑜
61 nelsn 2𝑜¬2𝑜
62 60 61 ax-mp ¬2𝑜
63 nelneq2 2𝑜2𝑜¬2𝑜¬2𝑜=
64 59 62 63 mp2an ¬2𝑜=
65 64 iffalsei if2𝑜=1𝑜2𝑜=2𝑜
66 58 65 eqtrdi r=2𝑜ifr=1𝑜r=2𝑜
67 prex 2𝑜V
68 66 1 67 fvmpt 2𝑜𝒫3𝑜K2𝑜=2𝑜
69 68 adantl 𝒫3𝑜2𝑜𝒫3𝑜K2𝑜=2𝑜
70 55 69 neleqtrrd 𝒫3𝑜2𝑜𝒫3𝑜¬1𝑜K2𝑜
71 nelss 1𝑜K¬1𝑜K2𝑜¬KK2𝑜
72 42 70 71 syl2anc 𝒫3𝑜2𝑜𝒫3𝑜¬KK2𝑜
73 snsspr1 2𝑜
74 72 73 jctil 𝒫3𝑜2𝑜𝒫3𝑜2𝑜¬KK2𝑜
75 30 35 74 rspcedvd 𝒫3𝑜2𝑜𝒫3𝑜t𝒫3𝑜t¬KKt
76 22 29 75 rspcedvd 𝒫3𝑜2𝑜𝒫3𝑜s𝒫3𝑜t𝒫3𝑜st¬KsKt
77 7 21 76 mp2an s𝒫3𝑜t𝒫3𝑜st¬KsKt