| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
|
| 2 |
|
clwlkclwwlkf.a |
|
| 3 |
|
clwlkclwwlkf.b |
|
| 4 |
|
clwlkclwwlkf.d |
|
| 5 |
|
clwlkclwwlkf.e |
|
| 6 |
1 2 3 4 5
|
clwlkclwwlkf1lem2 |
|
| 7 |
|
simprr |
|
| 8 |
1 2 3
|
clwlkclwwlkflem |
|
| 9 |
1 4 5
|
clwlkclwwlkflem |
|
| 10 |
|
lbfzo0 |
|
| 11 |
10
|
biimpri |
|
| 12 |
11
|
3ad2ant3 |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantr |
|
| 15 |
|
fveq2 |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
17
|
rspcv |
|
| 19 |
14 18
|
syl |
|
| 20 |
|
simpl |
|
| 21 |
|
eqtr |
|
| 22 |
21
|
adantl |
|
| 23 |
20 22
|
eqtrd |
|
| 24 |
23
|
exp32 |
|
| 25 |
24
|
com23 |
|
| 26 |
25
|
eqcoms |
|
| 27 |
26
|
3ad2ant2 |
|
| 28 |
27
|
com12 |
|
| 29 |
28
|
3ad2ant2 |
|
| 30 |
29
|
impcom |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
imp |
|
| 33 |
|
fveq2 |
|
| 34 |
33
|
eqcoms |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
adantr |
|
| 37 |
32 36
|
eqtrd |
|
| 38 |
37
|
ex |
|
| 39 |
19 38
|
syld |
|
| 40 |
39
|
ex |
|
| 41 |
8 9 40
|
syl2an |
|
| 42 |
41
|
impd |
|
| 43 |
42
|
3adant3 |
|
| 44 |
43
|
imp |
|
| 45 |
7 44
|
jca |
|
| 46 |
6 45
|
mpdan |
|
| 47 |
|
fvex |
|
| 48 |
|
fveq2 |
|
| 49 |
|
fveq2 |
|
| 50 |
48 49
|
eqeq12d |
|
| 51 |
50
|
ralunsn |
|
| 52 |
47 51
|
ax-mp |
|
| 53 |
46 52
|
sylibr |
|
| 54 |
|
nnnn0 |
|
| 55 |
|
elnn0uz |
|
| 56 |
54 55
|
sylib |
|
| 57 |
56
|
3ad2ant3 |
|
| 58 |
8 57
|
syl |
|
| 59 |
58
|
3ad2ant1 |
|
| 60 |
|
fzisfzounsn |
|
| 61 |
59 60
|
syl |
|
| 62 |
53 61
|
raleqtrrdv |
|