Description: Lemma 3 for clwlkclwwlkf1 . (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 30-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwlkclwwlkf.c | |
|
clwlkclwwlkf.a | |
||
clwlkclwwlkf.b | |
||
clwlkclwwlkf.d | |
||
clwlkclwwlkf.e | |
||
Assertion | clwlkclwwlkf1lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlkf.c | |
|
2 | clwlkclwwlkf.a | |
|
3 | clwlkclwwlkf.b | |
|
4 | clwlkclwwlkf.d | |
|
5 | clwlkclwwlkf.e | |
|
6 | 1 2 3 4 5 | clwlkclwwlkf1lem2 | |
7 | simprr | |
|
8 | 1 2 3 | clwlkclwwlkflem | |
9 | 1 4 5 | clwlkclwwlkflem | |
10 | lbfzo0 | |
|
11 | 10 | biimpri | |
12 | 11 | 3ad2ant3 | |
13 | 12 | adantr | |
14 | 13 | adantr | |
15 | fveq2 | |
|
16 | fveq2 | |
|
17 | 15 16 | eqeq12d | |
18 | 17 | rspcv | |
19 | 14 18 | syl | |
20 | simpl | |
|
21 | eqtr | |
|
22 | 21 | adantl | |
23 | 20 22 | eqtrd | |
24 | 23 | exp32 | |
25 | 24 | com23 | |
26 | 25 | eqcoms | |
27 | 26 | 3ad2ant2 | |
28 | 27 | com12 | |
29 | 28 | 3ad2ant2 | |
30 | 29 | impcom | |
31 | 30 | adantr | |
32 | 31 | imp | |
33 | fveq2 | |
|
34 | 33 | eqcoms | |
35 | 34 | adantl | |
36 | 35 | adantr | |
37 | 32 36 | eqtrd | |
38 | 37 | ex | |
39 | 19 38 | syld | |
40 | 39 | ex | |
41 | 8 9 40 | syl2an | |
42 | 41 | impd | |
43 | 42 | 3adant3 | |
44 | 43 | imp | |
45 | 7 44 | jca | |
46 | 6 45 | mpdan | |
47 | fvex | |
|
48 | fveq2 | |
|
49 | fveq2 | |
|
50 | 48 49 | eqeq12d | |
51 | 50 | ralunsn | |
52 | 47 51 | ax-mp | |
53 | 46 52 | sylibr | |
54 | nnnn0 | |
|
55 | elnn0uz | |
|
56 | 54 55 | sylib | |
57 | 56 | 3ad2ant3 | |
58 | 8 57 | syl | |
59 | 58 | 3ad2ant1 | |
60 | fzisfzounsn | |
|
61 | 59 60 | syl | |
62 | 61 | raleqdv | |
63 | 53 62 | mpbird | |