Metamath Proof Explorer


Theorem clwlkclwwlkf1lem3

Description: Lemma 3 for clwlkclwwlkf1 . (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 30-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C=wClWalksG|11stw
clwlkclwwlkf.a A=1stU
clwlkclwwlkf.b B=2ndU
clwlkclwwlkf.d D=1stW
clwlkclwwlkf.e E=2ndW
Assertion clwlkclwwlkf1lem3 UCWCBprefixA=EprefixDi0ABi=Ei

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C=wClWalksG|11stw
2 clwlkclwwlkf.a A=1stU
3 clwlkclwwlkf.b B=2ndU
4 clwlkclwwlkf.d D=1stW
5 clwlkclwwlkf.e E=2ndW
6 1 2 3 4 5 clwlkclwwlkf1lem2 UCWCBprefixA=EprefixDA=Di0..^ABi=Ei
7 simprr UCWCBprefixA=EprefixDA=Di0..^ABi=Eii0..^ABi=Ei
8 1 2 3 clwlkclwwlkflem UCAWalksGBB0=BAA
9 1 4 5 clwlkclwwlkflem WCDWalksGEE0=EDD
10 lbfzo0 00..^AA
11 10 biimpri A00..^A
12 11 3ad2ant3 AWalksGBB0=BAA00..^A
13 12 adantr AWalksGBB0=BAADWalksGEE0=EDD00..^A
14 13 adantr AWalksGBB0=BAADWalksGEE0=EDDA=D00..^A
15 fveq2 i=0Bi=B0
16 fveq2 i=0Ei=E0
17 15 16 eqeq12d i=0Bi=EiB0=E0
18 17 rspcv 00..^Ai0..^ABi=EiB0=E0
19 14 18 syl AWalksGBB0=BAADWalksGEE0=EDDA=Di0..^ABi=EiB0=E0
20 simpl BA=B0B0=E0E0=EDBA=B0
21 eqtr B0=E0E0=EDB0=ED
22 21 adantl BA=B0B0=E0E0=EDB0=ED
23 20 22 eqtrd BA=B0B0=E0E0=EDBA=ED
24 23 exp32 BA=B0B0=E0E0=EDBA=ED
25 24 com23 BA=B0E0=EDB0=E0BA=ED
26 25 eqcoms B0=BAE0=EDB0=E0BA=ED
27 26 3ad2ant2 AWalksGBB0=BAAE0=EDB0=E0BA=ED
28 27 com12 E0=EDAWalksGBB0=BAAB0=E0BA=ED
29 28 3ad2ant2 DWalksGEE0=EDDAWalksGBB0=BAAB0=E0BA=ED
30 29 impcom AWalksGBB0=BAADWalksGEE0=EDDB0=E0BA=ED
31 30 adantr AWalksGBB0=BAADWalksGEE0=EDDA=DB0=E0BA=ED
32 31 imp AWalksGBB0=BAADWalksGEE0=EDDA=DB0=E0BA=ED
33 fveq2 D=AED=EA
34 33 eqcoms A=DED=EA
35 34 adantl AWalksGBB0=BAADWalksGEE0=EDDA=DED=EA
36 35 adantr AWalksGBB0=BAADWalksGEE0=EDDA=DB0=E0ED=EA
37 32 36 eqtrd AWalksGBB0=BAADWalksGEE0=EDDA=DB0=E0BA=EA
38 37 ex AWalksGBB0=BAADWalksGEE0=EDDA=DB0=E0BA=EA
39 19 38 syld AWalksGBB0=BAADWalksGEE0=EDDA=Di0..^ABi=EiBA=EA
40 39 ex AWalksGBB0=BAADWalksGEE0=EDDA=Di0..^ABi=EiBA=EA
41 8 9 40 syl2an UCWCA=Di0..^ABi=EiBA=EA
42 41 impd UCWCA=Di0..^ABi=EiBA=EA
43 42 3adant3 UCWCBprefixA=EprefixDA=Di0..^ABi=EiBA=EA
44 43 imp UCWCBprefixA=EprefixDA=Di0..^ABi=EiBA=EA
45 7 44 jca UCWCBprefixA=EprefixDA=Di0..^ABi=Eii0..^ABi=EiBA=EA
46 6 45 mpdan UCWCBprefixA=EprefixDi0..^ABi=EiBA=EA
47 fvex AV
48 fveq2 i=ABi=BA
49 fveq2 i=AEi=EA
50 48 49 eqeq12d i=ABi=EiBA=EA
51 50 ralunsn AVi0..^AABi=Eii0..^ABi=EiBA=EA
52 47 51 ax-mp i0..^AABi=Eii0..^ABi=EiBA=EA
53 46 52 sylibr UCWCBprefixA=EprefixDi0..^AABi=Ei
54 nnnn0 AA0
55 elnn0uz A0A0
56 54 55 sylib AA0
57 56 3ad2ant3 AWalksGBB0=BAAA0
58 8 57 syl UCA0
59 58 3ad2ant1 UCWCBprefixA=EprefixDA0
60 fzisfzounsn A00A=0..^AA
61 59 60 syl UCWCBprefixA=EprefixD0A=0..^AA
62 61 raleqdv UCWCBprefixA=EprefixDi0ABi=Eii0..^AABi=Ei
63 53 62 mpbird UCWCBprefixA=EprefixDi0ABi=Ei