Metamath Proof Explorer


Theorem clwwlkn2

Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 25-Apr-2021)

Ref Expression
Assertion clwwlkn2 W2ClWWalksNGW=2WWordVtxGW0W1EdgG

Proof

Step Hyp Ref Expression
1 2nn 2
2 eqid VtxG=VtxG
3 eqid EdgG=EdgG
4 2 3 isclwwlknx 2W2ClWWalksNGWWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGW=2
5 1 4 ax-mp W2ClWWalksNGWWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGW=2
6 3anass WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGWWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgG
7 oveq1 W=2W1=21
8 2m1e1 21=1
9 7 8 eqtrdi W=2W1=1
10 9 oveq2d W=20..^W1=0..^1
11 fzo01 0..^1=0
12 10 11 eqtrdi W=20..^W1=0
13 12 adantr W=2WWordVtxG0..^W1=0
14 13 raleqdv W=2WWordVtxGi0..^W1WiWi+1EdgGi0WiWi+1EdgG
15 c0ex 0V
16 fveq2 i=0Wi=W0
17 fv0p1e1 i=0Wi+1=W1
18 16 17 preq12d i=0WiWi+1=W0W1
19 18 eleq1d i=0WiWi+1EdgGW0W1EdgG
20 15 19 ralsn i0WiWi+1EdgGW0W1EdgG
21 14 20 bitrdi W=2WWordVtxGi0..^W1WiWi+1EdgGW0W1EdgG
22 prcom lastSWW0=W0lastSW
23 lsw WWordVtxGlastSW=WW1
24 9 fveq2d W=2WW1=W1
25 23 24 sylan9eqr W=2WWordVtxGlastSW=W1
26 25 preq2d W=2WWordVtxGW0lastSW=W0W1
27 22 26 eqtrid W=2WWordVtxGlastSWW0=W0W1
28 27 eleq1d W=2WWordVtxGlastSWW0EdgGW0W1EdgG
29 21 28 anbi12d W=2WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGW0W1EdgGW0W1EdgG
30 anidm W0W1EdgGW0W1EdgGW0W1EdgG
31 29 30 bitrdi W=2WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGW0W1EdgG
32 31 pm5.32da W=2WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGWWordVtxGW0W1EdgG
33 6 32 bitrid W=2WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGWWordVtxGW0W1EdgG
34 33 pm5.32ri WWordVtxGi0..^W1WiWi+1EdgGlastSWW0EdgGW=2WWordVtxGW0W1EdgGW=2
35 3anass W=2WWordVtxGW0W1EdgGW=2WWordVtxGW0W1EdgG
36 ancom W=2WWordVtxGW0W1EdgGWWordVtxGW0W1EdgGW=2
37 35 36 bitr2i WWordVtxGW0W1EdgGW=2W=2WWordVtxGW0W1EdgG
38 5 34 37 3bitri W2ClWWalksNGW=2WWordVtxGW0W1EdgG