Description: The restriction of a metric space is closed if it is complete. (Contributed by AV, 9-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmsss.h | |
|
cmsss.x | |
||
cmsss.j | |
||
Assertion | cmssmscld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmsss.h | |
|
2 | cmsss.x | |
|
3 | cmsss.j | |
|
4 | eqid | |
|
5 | 2 4 | msmet | |
6 | 5 | 3ad2ant1 | |
7 | xpss12 | |
|
8 | 7 | anidms | |
9 | 8 | 3ad2ant2 | |
10 | 9 | resabs1d | |
11 | 2 | sseq2i | |
12 | fvex | |
|
13 | 12 | ssex | |
14 | 11 13 | sylbi | |
15 | 14 | 3ad2ant2 | |
16 | eqid | |
|
17 | 1 16 | ressds | |
18 | 15 17 | syl | |
19 | 18 | reseq1d | |
20 | 10 19 | eqtrd | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | iscms | |
24 | 1 2 | ressbas2 | |
25 | 24 | adantr | |
26 | 25 | eqcomd | |
27 | 26 | sqxpeqd | |
28 | 27 | reseq2d | |
29 | 26 | fveq2d | |
30 | 28 29 | eleq12d | |
31 | 30 | biimpd | |
32 | 31 | expimpd | |
33 | 23 32 | biimtrid | |
34 | 33 | imp | |
35 | 34 | 3adant1 | |
36 | 20 35 | eqeltrd | |
37 | eqid | |
|
38 | 37 | metsscmetcld | |
39 | 6 36 38 | syl2anc | |
40 | 3 2 4 | mstopn | |
41 | 40 | 3ad2ant1 | |
42 | 41 | fveq2d | |
43 | 39 42 | eleqtrrd | |