Metamath Proof Explorer


Theorem cncfcompt

Description: Composition of continuous functions. A generalization of cncfmpt1f to arbitrary domains. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfcompt.bcn φxAB:AcnC
cncfcompt.f φF:CcnD
Assertion cncfcompt φxAFB:AcnD

Proof

Step Hyp Ref Expression
1 cncfcompt.bcn φxAB:AcnC
2 cncfcompt.f φF:CcnD
3 cncff F:CcnDF:CD
4 2 3 syl φF:CD
5 4 adantr φxAF:CD
6 cncff xAB:AcnCxAB:AC
7 1 6 syl φxAB:AC
8 7 fvmptelcdm φxABC
9 5 8 ffvelcdmd φxAFBD
10 9 fmpttd φxAFB:AD
11 cncfrss2 F:CcnDD
12 2 11 syl φD
13 eqidd φxAB=xAB
14 4 feqmptd φF=yCFy
15 fveq2 y=BFy=FB
16 8 13 14 15 fmptco φFxAB=xAFB
17 ssid
18 cncfss DCcnDCcn
19 12 17 18 sylancl φCcnDCcn
20 19 2 sseldd φF:Ccn
21 1 20 cncfco φFxAB:Acn
22 16 21 eqeltrrd φxAFB:Acn
23 cncfcdm DxAFB:AcnxAFB:AcnDxAFB:AD
24 12 22 23 syl2anc φxAFB:AcnDxAFB:AD
25 10 24 mpbird φxAFB:AcnD