Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnextfres.c | |
|
cnextfres.b | |
||
cnextfres.j | |
||
cnextfres.k | |
||
cnextfres.a | |
||
cnextfres.1 | |
||
cnextfres.x | |
||
Assertion | cnextfres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextfres.c | |
|
2 | cnextfres.b | |
|
3 | cnextfres.j | |
|
4 | cnextfres.k | |
|
5 | cnextfres.a | |
|
6 | cnextfres.1 | |
|
7 | cnextfres.x | |
|
8 | eqid | |
|
9 | 8 2 | cnf | |
10 | 6 9 | syl | |
11 | 1 | restuni | |
12 | 3 5 11 | syl2anc | |
13 | 12 | feq2d | |
14 | 10 13 | mpbird | |
15 | 1 2 | cnextfun | |
16 | 3 4 14 5 15 | syl22anc | |
17 | 1 | sscls | |
18 | 3 5 17 | syl2anc | |
19 | 18 7 | sseldd | |
20 | 1 2 3 5 6 7 | flfcntr | |
21 | sneq | |
|
22 | 21 | fveq2d | |
23 | 22 | oveq1d | |
24 | 23 | oveq2d | |
25 | 24 | fveq1d | |
26 | 25 | opeliunxp2 | |
27 | 19 20 26 | sylanbrc | |
28 | haustop | |
|
29 | 4 28 | syl | |
30 | 1 2 | cnextfval | |
31 | 3 29 14 5 30 | syl22anc | |
32 | 27 31 | eleqtrrd | |
33 | df-br | |
|
34 | 32 33 | sylibr | |
35 | funbrfv | |
|
36 | 16 34 35 | sylc | |