Metamath Proof Explorer


Theorem cnextfres

Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 29-Aug-2020)

Ref Expression
Hypotheses cnextfres.c C=J
cnextfres.b B=K
cnextfres.j φJTop
cnextfres.k φKHaus
cnextfres.a φAC
cnextfres.1 φFJ𝑡ACnK
cnextfres.x φXA
Assertion cnextfres φJCnExtKFX=FX

Proof

Step Hyp Ref Expression
1 cnextfres.c C=J
2 cnextfres.b B=K
3 cnextfres.j φJTop
4 cnextfres.k φKHaus
5 cnextfres.a φAC
6 cnextfres.1 φFJ𝑡ACnK
7 cnextfres.x φXA
8 eqid J𝑡A=J𝑡A
9 8 2 cnf FJ𝑡ACnKF:J𝑡AB
10 6 9 syl φF:J𝑡AB
11 1 restuni JTopACA=J𝑡A
12 3 5 11 syl2anc φA=J𝑡A
13 12 feq2d φF:ABF:J𝑡AB
14 10 13 mpbird φF:AB
15 1 2 cnextfun JTopKHausF:ABACFunJCnExtKF
16 3 4 14 5 15 syl22anc φFunJCnExtKF
17 1 sscls JTopACAclsJA
18 3 5 17 syl2anc φAclsJA
19 18 7 sseldd φXclsJA
20 1 2 3 5 6 7 flfcntr φFXKfLimfneiJX𝑡AF
21 sneq x=Xx=X
22 21 fveq2d x=XneiJx=neiJX
23 22 oveq1d x=XneiJx𝑡A=neiJX𝑡A
24 23 oveq2d x=XKfLimfneiJx𝑡A=KfLimfneiJX𝑡A
25 24 fveq1d x=XKfLimfneiJx𝑡AF=KfLimfneiJX𝑡AF
26 25 opeliunxp2 XFXxclsJAx×KfLimfneiJx𝑡AFXclsJAFXKfLimfneiJX𝑡AF
27 19 20 26 sylanbrc φXFXxclsJAx×KfLimfneiJx𝑡AF
28 haustop KHausKTop
29 4 28 syl φKTop
30 1 2 cnextfval JTopKTopF:ABACJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
31 3 29 14 5 30 syl22anc φJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
32 27 31 eleqtrrd φXFXJCnExtKF
33 df-br XJCnExtKFFXXFXJCnExtKF
34 32 33 sylibr φXJCnExtKFFX
35 funbrfv FunJCnExtKFXJCnExtKFFXJCnExtKFX=FX
36 16 34 35 sylc φJCnExtKFX=FX