Metamath Proof Explorer


Theorem cnlnadjlem5

Description: Lemma for cnlnadji . F is an adjoint of T (later, we will show it is unique). (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadjlem.1 TLinOp
cnlnadjlem.2 TContOp
cnlnadjlem.3 G=gTgihy
cnlnadjlem.4 B=ιw|vTvihy=vihw
cnlnadjlem.5 F=yB
Assertion cnlnadjlem5 ACTCihA=CihFA

Proof

Step Hyp Ref Expression
1 cnlnadjlem.1 TLinOp
2 cnlnadjlem.2 TContOp
3 cnlnadjlem.3 G=gTgihy
4 cnlnadjlem.4 B=ιw|vTvihy=vihw
5 cnlnadjlem.5 F=yB
6 nfcv _yA
7 nfcv _y
8 nfcv _yf
9 nfcv _yih
10 nfmpt1 _yyB
11 5 10 nfcxfr _yF
12 11 6 nffv _yFA
13 8 9 12 nfov _yfihFA
14 13 nfeq2 yTfihA=fihFA
15 7 14 nfralw yfTfihA=fihFA
16 oveq2 y=ATfihy=TfihA
17 fveq2 y=AFy=FA
18 17 oveq2d y=AfihFy=fihFA
19 16 18 eqeq12d y=ATfihy=fihFyTfihA=fihFA
20 19 ralbidv y=AfTfihy=fihFyfTfihA=fihFA
21 riotaex ιw|vTvihy=vihwV
22 4 21 eqeltri BV
23 5 fvmpt2 yBVFy=B
24 22 23 mpan2 yFy=B
25 fveq2 v=fTv=Tf
26 25 oveq1d v=fTvihy=Tfihy
27 oveq1 v=fvihw=fihw
28 26 27 eqeq12d v=fTvihy=vihwTfihy=fihw
29 28 cbvralvw vTvihy=vihwfTfihy=fihw
30 29 a1i wvTvihy=vihwfTfihy=fihw
31 1 2 3 cnlnadjlem1 fGf=Tfihy
32 31 eqeq1d fGf=fihwTfihy=fihw
33 32 ralbiia fGf=fihwfTfihy=fihw
34 30 33 bitr4di wvTvihy=vihwfGf=fihw
35 34 riotabiia ιw|vTvihy=vihw=ιw|fGf=fihw
36 4 35 eqtri B=ιw|fGf=fihw
37 1 2 3 cnlnadjlem2 yGLinFnGContFn
38 elin GLinFnContFnGLinFnGContFn
39 37 38 sylibr yGLinFnContFn
40 riesz4 GLinFnContFn∃!wfGf=fihw
41 riotacl2 ∃!wfGf=fihwιw|fGf=fihww|fGf=fihw
42 39 40 41 3syl yιw|fGf=fihww|fGf=fihw
43 36 42 eqeltrid yBw|fGf=fihw
44 24 43 eqeltrd yFyw|fGf=fihw
45 oveq2 w=Fyfihw=fihFy
46 45 eqeq2d w=FyTfihy=fihwTfihy=fihFy
47 46 ralbidv w=FyfTfihy=fihwfTfihy=fihFy
48 33 47 bitrid w=FyfGf=fihwfTfihy=fihFy
49 48 elrab Fyw|fGf=fihwFyfTfihy=fihFy
50 49 simprbi Fyw|fGf=fihwfTfihy=fihFy
51 44 50 syl yfTfihy=fihFy
52 6 15 20 51 vtoclgaf AfTfihA=fihFA
53 fveq2 f=CTf=TC
54 53 oveq1d f=CTfihA=TCihA
55 oveq1 f=CfihFA=CihFA
56 54 55 eqeq12d f=CTfihA=fihFATCihA=CihFA
57 56 rspccva fTfihA=fihFACTCihA=CihFA
58 52 57 sylan ACTCihA=CihFA