Metamath Proof Explorer


Theorem cnpfcfi

Description: Lemma for cnpfcf . If a function is continuous at a point, it respects clustering there. (Contributed by Jeff Hankins, 20-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion cnpfcfi KTopAJfClusLFJCnPKAFAKfClusfLF

Proof

Step Hyp Ref Expression
1 simp2 KTopAJfClusLFJCnPKAAJfClusL
2 eqid J=J
3 2 fclsfil AJfClusLLFilJ
4 3 3ad2ant2 KTopAJfClusLFJCnPKALFilJ
5 fclsfnflim LFilJAJfClusLfFilJLfAJfLimf
6 4 5 syl KTopAJfClusLFJCnPKAAJfClusLfFilJLfAJfLimf
7 1 6 mpbid KTopAJfClusLFJCnPKAfFilJLfAJfLimf
8 simpl1 KTopAJfClusLFJCnPKAfFilJLfAJfLimfKTop
9 toptopon2 KTopKTopOnK
10 8 9 sylib KTopAJfClusLFJCnPKAfFilJLfAJfLimfKTopOnK
11 simprl KTopAJfClusLFJCnPKAfFilJLfAJfLimffFilJ
12 eqid K=K
13 2 12 cnpf FJCnPKAF:JK
14 13 3ad2ant3 KTopAJfClusLFJCnPKAF:JK
15 14 adantr KTopAJfClusLFJCnPKAfFilJLfAJfLimfF:JK
16 flfssfcf KTopOnKfFilJF:JKKfLimffFKfClusffF
17 10 11 15 16 syl3anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfLimffFKfClusffF
18 12 topopn KTopKK
19 8 18 syl KTopAJfClusLFJCnPKAfFilJLfAJfLimfKK
20 4 adantr KTopAJfClusLFJCnPKAfFilJLfAJfLimfLFilJ
21 filfbas LFilJLfBasJ
22 20 21 syl KTopAJfClusLFJCnPKAfFilJLfAJfLimfLfBasJ
23 fmfil KKLfBasJF:JKKFilMapFLFilK
24 19 22 15 23 syl3anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKFilMapFLFilK
25 filfbas fFilJffBasJ
26 25 ad2antrl KTopAJfClusLFJCnPKAfFilJLfAJfLimfffBasJ
27 simprrl KTopAJfClusLFJCnPKAfFilJLfAJfLimfLf
28 fmss KKLfBasJffBasJF:JKLfKFilMapFLKFilMapFf
29 19 22 26 15 27 28 syl32anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKFilMapFLKFilMapFf
30 fclsss2 KTopOnKKFilMapFLFilKKFilMapFLKFilMapFfKfClusKFilMapFfKfClusKFilMapFL
31 10 24 29 30 syl3anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfClusKFilMapFfKfClusKFilMapFL
32 fcfval KTopOnKfFilJF:JKKfClusffF=KfClusKFilMapFf
33 10 11 15 32 syl3anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfClusffF=KfClusKFilMapFf
34 fcfval KTopOnKLFilJF:JKKfClusfLF=KfClusKFilMapFL
35 10 20 15 34 syl3anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfClusfLF=KfClusKFilMapFL
36 31 33 35 3sstr4d KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfClusffFKfClusfLF
37 17 36 sstrd KTopAJfClusLFJCnPKAfFilJLfAJfLimfKfLimffFKfClusfLF
38 simprrr KTopAJfClusLFJCnPKAfFilJLfAJfLimfAJfLimf
39 simpl3 KTopAJfClusLFJCnPKAfFilJLfAJfLimfFJCnPKA
40 cnpflfi AJfLimfFJCnPKAFAKfLimffF
41 38 39 40 syl2anc KTopAJfClusLFJCnPKAfFilJLfAJfLimfFAKfLimffF
42 37 41 sseldd KTopAJfClusLFJCnPKAfFilJLfAJfLimfFAKfClusfLF
43 7 42 rexlimddv KTopAJfClusLFJCnPKAFAKfClusfLF