Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | coe1mul2lem2.h | |
|
Assertion | coe1mul2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1mul2lem2.h | |
|
2 | df1o2 | |
|
3 | nn0ex | |
|
4 | 0ex | |
|
5 | eqid | |
|
6 | 2 3 4 5 | mapsnf1o2 | |
7 | f1of1 | |
|
8 | 6 7 | ax-mp | |
9 | 1 | ssrab3 | |
10 | 9 | a1i | |
11 | f1ores | |
|
12 | 8 10 11 | sylancr | |
13 | coe1mul2lem1 | |
|
14 | 13 | rabbidva | |
15 | fveq1 | |
|
16 | 15 | eleq1d | |
17 | 16 | cbvrabv | |
18 | 14 17 | eqtr4di | |
19 | 5 | mptpreima | |
20 | 18 1 19 | 3eqtr4g | |
21 | 20 | imaeq2d | |
22 | f1ofo | |
|
23 | 6 22 | ax-mp | |
24 | fz0ssnn0 | |
|
25 | foimacnv | |
|
26 | 23 24 25 | mp2an | |
27 | 21 26 | eqtrdi | |
28 | 27 | f1oeq3d | |
29 | resmpt | |
|
30 | f1oeq1 | |
|
31 | 10 29 30 | 3syl | |
32 | 28 31 | bitrd | |
33 | 12 32 | mpbid | |