Metamath Proof Explorer


Theorem coe1mul2lem2

Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypothesis coe1mul2lem2.h H=d01𝑜|df1𝑜×k
Assertion coe1mul2lem2 k0cHc:H1-1 onto0k

Proof

Step Hyp Ref Expression
1 coe1mul2lem2.h H=d01𝑜|df1𝑜×k
2 df1o2 1𝑜=
3 nn0ex 0V
4 0ex V
5 eqid c01𝑜c=c01𝑜c
6 2 3 4 5 mapsnf1o2 c01𝑜c:01𝑜1-1 onto0
7 f1of1 c01𝑜c:01𝑜1-1 onto0c01𝑜c:01𝑜1-10
8 6 7 ax-mp c01𝑜c:01𝑜1-10
9 1 ssrab3 H01𝑜
10 9 a1i k0H01𝑜
11 f1ores c01𝑜c:01𝑜1-10H01𝑜c01𝑜cH:H1-1 ontoc01𝑜cH
12 8 10 11 sylancr k0c01𝑜cH:H1-1 ontoc01𝑜cH
13 coe1mul2lem1 k0d01𝑜df1𝑜×kd0k
14 13 rabbidva k0d01𝑜|df1𝑜×k=d01𝑜|d0k
15 fveq1 c=dc=d
16 15 eleq1d c=dc0kd0k
17 16 cbvrabv c01𝑜|c0k=d01𝑜|d0k
18 14 17 eqtr4di k0d01𝑜|df1𝑜×k=c01𝑜|c0k
19 5 mptpreima c01𝑜c-10k=c01𝑜|c0k
20 18 1 19 3eqtr4g k0H=c01𝑜c-10k
21 20 imaeq2d k0c01𝑜cH=c01𝑜cc01𝑜c-10k
22 f1ofo c01𝑜c:01𝑜1-1 onto0c01𝑜c:01𝑜onto0
23 6 22 ax-mp c01𝑜c:01𝑜onto0
24 fz0ssnn0 0k0
25 foimacnv c01𝑜c:01𝑜onto00k0c01𝑜cc01𝑜c-10k=0k
26 23 24 25 mp2an c01𝑜cc01𝑜c-10k=0k
27 21 26 eqtrdi k0c01𝑜cH=0k
28 27 f1oeq3d k0c01𝑜cH:H1-1 ontoc01𝑜cHc01𝑜cH:H1-1 onto0k
29 resmpt H01𝑜c01𝑜cH=cHc
30 f1oeq1 c01𝑜cH=cHcc01𝑜cH:H1-1 onto0kcHc:H1-1 onto0k
31 10 29 30 3syl k0c01𝑜cH:H1-1 onto0kcHc:H1-1 onto0k
32 28 31 bitrd k0c01𝑜cH:H1-1 ontoc01𝑜cHcHc:H1-1 onto0k
33 12 32 mpbid k0cHc:H1-1 onto0k