Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofulid.g | |
|
cofulid.1 | |
||
Assertion | cofulid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofulid.g | |
|
2 | cofulid.1 | |
|
3 | eqid | |
|
4 | funcrcl | |
|
5 | 1 4 | syl | |
6 | 5 | simprd | |
7 | 2 3 6 | idfu1st | |
8 | 7 | coeq1d | |
9 | eqid | |
|
10 | relfunc | |
|
11 | 1st2ndbr | |
|
12 | 10 1 11 | sylancr | |
13 | 9 3 12 | funcf1 | |
14 | fcoi2 | |
|
15 | 13 14 | syl | |
16 | 8 15 | eqtrd | |
17 | 6 | 3ad2ant1 | |
18 | eqid | |
|
19 | 13 | ffvelcdmda | |
20 | 19 | 3adant3 | |
21 | 13 | ffvelcdmda | |
22 | 21 | 3adant2 | |
23 | 2 3 17 18 20 22 | idfu2nd | |
24 | 23 | coeq1d | |
25 | eqid | |
|
26 | 12 | 3ad2ant1 | |
27 | simp2 | |
|
28 | simp3 | |
|
29 | 9 25 18 26 27 28 | funcf2 | |
30 | fcoi2 | |
|
31 | 29 30 | syl | |
32 | 24 31 | eqtrd | |
33 | 32 | mpoeq3dva | |
34 | 9 12 | funcfn2 | |
35 | fnov | |
|
36 | 34 35 | sylib | |
37 | 33 36 | eqtr4d | |
38 | 16 37 | opeq12d | |
39 | 2 | idfucl | |
40 | 6 39 | syl | |
41 | 9 1 40 | cofuval | |
42 | 1st2nd | |
|
43 | 10 1 42 | sylancr | |
44 | 38 41 43 | 3eqtr4d | |