Metamath Proof Explorer


Theorem colopp

Description: Opposite sides of a line for colinear points. Theorem 9.18 of Schwabhauser p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
colopp.b φBP
colopp.p φCD
colopp.1 φCALBA=B
Assertion colopp φAOBCAIB¬AD¬BD

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 colopp.b φBP
9 colopp.p φCD
10 colopp.1 φCALBA=B
11 4 ad3antrrr φ¬AD¬BDyDyAIBG𝒢Tarski
12 6 ad3antrrr φ¬AD¬BDyDyAIBAP
13 8 ad3antrrr φ¬AD¬BDyDyAIBBP
14 eqid distG=distG
15 5 ad3antrrr φ¬AD¬BDyDyAIBDranL
16 simpllr φ¬AD¬BDyDyAIB¬AD¬BD
17 simplr φ¬AD¬BDyDyAIByD
18 eleq1w t=ytAIByAIB
19 18 adantl φ¬AD¬BDyDyAIBt=ytAIByAIB
20 simpr φ¬AD¬BDyDyAIByAIB
21 17 19 20 rspcedvd φ¬AD¬BDyDyAIBtDtAIB
22 1 14 2 7 6 8 islnopp φAOB¬AD¬BDtDtAIB
23 22 ad3antrrr φ¬AD¬BDyDyAIBAOB¬AD¬BDtDtAIB
24 16 21 23 mpbir2and φ¬AD¬BDyDyAIBAOB
25 1 14 2 7 3 15 11 12 13 24 oppne3 φ¬AD¬BDyDyAIBAB
26 1 2 3 11 12 13 25 tgelrnln φ¬AD¬BDyDyAIBALBranL
27 1 2 3 11 12 13 25 tglinerflx1 φ¬AD¬BDyDyAIBAALB
28 16 simpld φ¬AD¬BDyDyAIB¬AD
29 nelne1 AALB¬ADALBD
30 27 28 29 syl2anc φ¬AD¬BDyDyAIBALBD
31 25 neneqd φ¬AD¬BDyDyAIB¬A=B
32 10 orcomd φA=BCALB
33 32 ord φ¬A=BCALB
34 33 ad3antrrr φ¬AD¬BDyDyAIB¬A=BCALB
35 31 34 mpd φ¬AD¬BDyDyAIBCALB
36 9 ad3antrrr φ¬AD¬BDyDyAIBCD
37 35 36 elind φ¬AD¬BDyDyAIBCALBD
38 1 3 2 11 15 17 tglnpt φ¬AD¬BDyDyAIByP
39 1 2 3 11 12 13 38 25 20 btwnlng1 φ¬AD¬BDyDyAIByALB
40 39 17 elind φ¬AD¬BDyDyAIByALBD
41 1 2 3 11 26 15 30 37 40 tglineineq φ¬AD¬BDyDyAIBC=y
42 41 20 eqeltrd φ¬AD¬BDyDyAIBCAIB
43 42 adantllr φ¬AD¬BDtDtAIByDyAIBCAIB
44 simpr φ¬AD¬BDtDtAIBtDtAIB
45 18 cbvrexvw tDtAIByDyAIB
46 44 45 sylib φ¬AD¬BDtDtAIByDyAIB
47 43 46 r19.29a φ¬AD¬BDtDtAIBCAIB
48 9 adantr φCAIBCD
49 simpr φCAIBt=Ct=C
50 49 eleq1d φCAIBt=CtAIBCAIB
51 simpr φCAIBCAIB
52 48 50 51 rspcedvd φCAIBtDtAIB
53 52 adantlr φ¬AD¬BDCAIBtDtAIB
54 47 53 impbida φ¬AD¬BDtDtAIBCAIB
55 54 pm5.32da φ¬AD¬BDtDtAIB¬AD¬BDCAIB
56 3anrot CAIB¬AD¬BD¬AD¬BDCAIB
57 df-3an ¬AD¬BDCAIB¬AD¬BDCAIB
58 56 57 bitri CAIB¬AD¬BD¬AD¬BDCAIB
59 58 a1i φCAIB¬AD¬BD¬AD¬BDCAIB
60 55 22 59 3bitr4d φAOBCAIB¬AD¬BD