Metamath Proof Explorer


Theorem comfeq

Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses comfeq.1 ·˙=compC
comfeq.2 ˙=compD
comfeq.h H=HomC
comfeq.3 φB=BaseC
comfeq.4 φB=BaseD
comfeq.5 φHom𝑓C=Hom𝑓D
Assertion comfeq φcomp𝑓C=comp𝑓DxByBzBfxHygyHzgxy·˙zf=gxy˙zf

Proof

Step Hyp Ref Expression
1 comfeq.1 ·˙=compC
2 comfeq.2 ˙=compD
3 comfeq.h H=HomC
4 comfeq.3 φB=BaseC
5 comfeq.4 φB=BaseD
6 comfeq.5 φHom𝑓C=Hom𝑓D
7 4 sqxpeqd φB×B=BaseC×BaseC
8 eqidd φg2nduHz,fHugu·˙zf=g2nduHz,fHugu·˙zf
9 7 4 8 mpoeq123dv φuB×B,zBg2nduHz,fHugu·˙zf=uBaseC×BaseC,zBaseCg2nduHz,fHugu·˙zf
10 eqid comp𝑓C=comp𝑓C
11 eqid BaseC=BaseC
12 10 11 3 1 comfffval comp𝑓C=uBaseC×BaseC,zBaseCg2nduHz,fHugu·˙zf
13 9 12 eqtr4di φuB×B,zBg2nduHz,fHugu·˙zf=comp𝑓C
14 eqid HomD=HomD
15 6 3ad2ant1 φuB×BzBHom𝑓C=Hom𝑓D
16 xp2nd uB×B2nduB
17 16 3ad2ant2 φuB×BzB2nduB
18 4 3ad2ant1 φuB×BzBB=BaseC
19 17 18 eleqtrd φuB×BzB2nduBaseC
20 simp3 φuB×BzBzB
21 20 18 eleqtrd φuB×BzBzBaseC
22 11 3 14 15 19 21 homfeqval φuB×BzB2nduHz=2nduHomDz
23 xp1st uB×B1stuB
24 23 3ad2ant2 φuB×BzB1stuB
25 24 18 eleqtrd φuB×BzB1stuBaseC
26 11 3 14 15 25 19 homfeqval φuB×BzB1stuH2ndu=1stuHomD2ndu
27 df-ov 1stuH2ndu=H1stu2ndu
28 df-ov 1stuHomD2ndu=HomD1stu2ndu
29 26 27 28 3eqtr3g φuB×BzBH1stu2ndu=HomD1stu2ndu
30 1st2nd2 uB×Bu=1stu2ndu
31 30 3ad2ant2 φuB×BzBu=1stu2ndu
32 31 fveq2d φuB×BzBHu=H1stu2ndu
33 31 fveq2d φuB×BzBHomDu=HomD1stu2ndu
34 29 32 33 3eqtr4d φuB×BzBHu=HomDu
35 eqidd φuB×BzBgu˙zf=gu˙zf
36 22 34 35 mpoeq123dv φuB×BzBg2nduHz,fHugu˙zf=g2nduHomDz,fHomDugu˙zf
37 36 mpoeq3dva φuB×B,zBg2nduHz,fHugu˙zf=uB×B,zBg2nduHomDz,fHomDugu˙zf
38 5 sqxpeqd φB×B=BaseD×BaseD
39 eqidd φg2nduHomDz,fHomDugu˙zf=g2nduHomDz,fHomDugu˙zf
40 38 5 39 mpoeq123dv φuB×B,zBg2nduHomDz,fHomDugu˙zf=uBaseD×BaseD,zBaseDg2nduHomDz,fHomDugu˙zf
41 37 40 eqtrd φuB×B,zBg2nduHz,fHugu˙zf=uBaseD×BaseD,zBaseDg2nduHomDz,fHomDugu˙zf
42 eqid comp𝑓D=comp𝑓D
43 eqid BaseD=BaseD
44 42 43 14 2 comfffval comp𝑓D=uBaseD×BaseD,zBaseDg2nduHomDz,fHomDugu˙zf
45 41 44 eqtr4di φuB×B,zBg2nduHz,fHugu˙zf=comp𝑓D
46 13 45 eqeq12d φuB×B,zBg2nduHz,fHugu·˙zf=uB×B,zBg2nduHz,fHugu˙zfcomp𝑓C=comp𝑓D
47 ovex 2nduHzV
48 fvex HuV
49 47 48 mpoex g2nduHz,fHugu·˙zfV
50 49 rgen2w uB×BzBg2nduHz,fHugu·˙zfV
51 mpo2eqb uB×BzBg2nduHz,fHugu·˙zfVuB×B,zBg2nduHz,fHugu·˙zf=uB×B,zBg2nduHz,fHugu˙zfuB×BzBg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zf
52 50 51 ax-mp uB×B,zBg2nduHz,fHugu·˙zf=uB×B,zBg2nduHz,fHugu˙zfuB×BzBg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zf
53 vex xV
54 vex yV
55 53 54 op2ndd u=xy2ndu=y
56 55 oveq1d u=xy2nduHz=yHz
57 fveq2 u=xyHu=Hxy
58 df-ov xHy=Hxy
59 57 58 eqtr4di u=xyHu=xHy
60 oveq1 u=xyu·˙z=xy·˙z
61 60 oveqd u=xygu·˙zf=gxy·˙zf
62 oveq1 u=xyu˙z=xy˙z
63 62 oveqd u=xygu˙zf=gxy˙zf
64 61 63 eqeq12d u=xygu·˙zf=gu˙zfgxy·˙zf=gxy˙zf
65 59 64 raleqbidv u=xyfHugu·˙zf=gu˙zffxHygxy·˙zf=gxy˙zf
66 56 65 raleqbidv u=xyg2nduHzfHugu·˙zf=gu˙zfgyHzfxHygxy·˙zf=gxy˙zf
67 ovex gu·˙zfV
68 67 rgen2w g2nduHzfHugu·˙zfV
69 mpo2eqb g2nduHzfHugu·˙zfVg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zfg2nduHzfHugu·˙zf=gu˙zf
70 68 69 ax-mp g2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zfg2nduHzfHugu·˙zf=gu˙zf
71 ralcom fxHygyHzgxy·˙zf=gxy˙zfgyHzfxHygxy·˙zf=gxy˙zf
72 66 70 71 3bitr4g u=xyg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zffxHygyHzgxy·˙zf=gxy˙zf
73 72 ralbidv u=xyzBg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zfzBfxHygyHzgxy·˙zf=gxy˙zf
74 73 ralxp uB×BzBg2nduHz,fHugu·˙zf=g2nduHz,fHugu˙zfxByBzBfxHygyHzgxy·˙zf=gxy˙zf
75 52 74 bitri uB×B,zBg2nduHz,fHugu·˙zf=uB×B,zBg2nduHz,fHugu˙zfxByBzBfxHygyHzgxy·˙zf=gxy˙zf
76 46 75 bitr3di φcomp𝑓C=comp𝑓DxByBzBfxHygyHzgxy·˙zf=gxy˙zf