| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  | 
						
							| 2 |  | conjghm.p |  | 
						
							| 3 |  | conjghm.m |  | 
						
							| 4 |  | conjghm.f |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 1 2 | grpcl |  | 
						
							| 8 | 7 | 3expa |  | 
						
							| 9 |  | simplr |  | 
						
							| 10 | 1 3 | grpsubcl |  | 
						
							| 11 | 6 8 9 10 | syl3anc |  | 
						
							| 12 | 11 4 | fmptd |  | 
						
							| 13 | 5 | adantr |  | 
						
							| 14 |  | simplr |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 | 1 2 | grpcl |  | 
						
							| 17 | 13 14 15 16 | syl3anc |  | 
						
							| 18 | 1 3 | grpsubcl |  | 
						
							| 19 | 13 17 14 18 | syl3anc |  | 
						
							| 20 |  | simprr |  | 
						
							| 21 | 1 3 | grpsubcl |  | 
						
							| 22 | 13 20 14 21 | syl3anc |  | 
						
							| 23 | 1 2 | grpass |  | 
						
							| 24 | 13 19 14 22 23 | syl13anc |  | 
						
							| 25 | 1 2 3 | grpnpcan |  | 
						
							| 26 | 13 17 14 25 | syl3anc |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 1 2 3 | grpaddsubass |  | 
						
							| 29 | 13 17 20 14 28 | syl13anc |  | 
						
							| 30 | 1 2 | grpass |  | 
						
							| 31 | 13 14 15 20 30 | syl13anc |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 27 29 32 | 3eqtr2rd |  | 
						
							| 34 | 1 2 3 | grpaddsubass |  | 
						
							| 35 | 13 14 20 14 34 | syl13anc |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 24 33 36 | 3eqtr4d |  | 
						
							| 38 | 1 2 | grpcl |  | 
						
							| 39 | 13 15 20 38 | syl3anc |  | 
						
							| 40 |  | oveq2 |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 |  | ovex |  | 
						
							| 43 | 41 4 42 | fvmpt |  | 
						
							| 44 | 39 43 | syl |  | 
						
							| 45 |  | oveq2 |  | 
						
							| 46 | 45 | oveq1d |  | 
						
							| 47 |  | ovex |  | 
						
							| 48 | 46 4 47 | fvmpt |  | 
						
							| 49 | 48 | ad2antrl |  | 
						
							| 50 |  | oveq2 |  | 
						
							| 51 | 50 | oveq1d |  | 
						
							| 52 |  | ovex |  | 
						
							| 53 | 51 4 52 | fvmpt |  | 
						
							| 54 | 53 | ad2antll |  | 
						
							| 55 | 49 54 | oveq12d |  | 
						
							| 56 | 37 44 55 | 3eqtr4d |  | 
						
							| 57 | 1 1 2 2 5 5 12 56 | isghmd |  | 
						
							| 58 | 5 | adantr |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 | 1 59 | grpinvcl |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 |  | simplr |  | 
						
							| 64 | 1 2 | grpcl |  | 
						
							| 65 | 58 62 63 64 | syl3anc |  | 
						
							| 66 | 1 2 | grpcl |  | 
						
							| 67 | 58 61 65 66 | syl3anc |  | 
						
							| 68 | 5 | adantr |  | 
						
							| 69 | 65 | adantrl |  | 
						
							| 70 | 8 | adantrr |  | 
						
							| 71 | 60 | adantr |  | 
						
							| 72 | 1 2 | grplcan |  | 
						
							| 73 | 68 69 70 71 72 | syl13anc |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 1 2 74 59 | grplinv |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 | 76 | oveq1d |  | 
						
							| 78 |  | simplr |  | 
						
							| 79 |  | simprl |  | 
						
							| 80 | 1 2 | grpass |  | 
						
							| 81 | 68 71 78 79 80 | syl13anc |  | 
						
							| 82 | 1 2 74 | grplid |  | 
						
							| 83 | 82 | ad2ant2r |  | 
						
							| 84 | 77 81 83 | 3eqtr3rd |  | 
						
							| 85 | 84 | eqeq2d |  | 
						
							| 86 |  | simprr |  | 
						
							| 87 | 1 2 3 | grpsubadd |  | 
						
							| 88 | 68 70 78 86 87 | syl13anc |  | 
						
							| 89 | 73 85 88 | 3bitr4d |  | 
						
							| 90 |  | eqcom |  | 
						
							| 91 |  | eqcom |  | 
						
							| 92 | 89 90 91 | 3bitr4g |  | 
						
							| 93 | 4 11 67 92 | f1o2d |  | 
						
							| 94 | 57 93 | jca |  |