Metamath Proof Explorer


Theorem coprm

Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in ApostolNT p. 17. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion coprm PN¬PNPgcdN=1

Proof

Step Hyp Ref Expression
1 prmz PP
2 gcddvds PNPgcdNPPgcdNN
3 1 2 sylan PNPgcdNPPgcdNN
4 3 simprd PNPgcdNN
5 breq1 PgcdN=PPgcdNNPN
6 4 5 syl5ibcom PNPgcdN=PPN
7 6 con3d PN¬PN¬PgcdN=P
8 0nnn ¬0
9 prmnn PP
10 eleq1 P=0P0
11 9 10 syl5ibcom PP=00
12 8 11 mtoi P¬P=0
13 12 intnanrd P¬P=0N=0
14 13 adantr PN¬P=0N=0
15 gcdn0cl PN¬P=0N=0PgcdN
16 15 ex PN¬P=0N=0PgcdN
17 1 16 sylan PN¬P=0N=0PgcdN
18 14 17 mpd PNPgcdN
19 3 simpld PNPgcdNP
20 isprm2 PP2zzPz=1z=P
21 20 simprbi PzzPz=1z=P
22 breq1 z=PgcdNzPPgcdNP
23 eqeq1 z=PgcdNz=1PgcdN=1
24 eqeq1 z=PgcdNz=PPgcdN=P
25 23 24 orbi12d z=PgcdNz=1z=PPgcdN=1PgcdN=P
26 22 25 imbi12d z=PgcdNzPz=1z=PPgcdNPPgcdN=1PgcdN=P
27 26 rspcv PgcdNzzPz=1z=PPgcdNPPgcdN=1PgcdN=P
28 21 27 syl5com PPgcdNPgcdNPPgcdN=1PgcdN=P
29 28 adantr PNPgcdNPgcdNPPgcdN=1PgcdN=P
30 18 19 29 mp2d PNPgcdN=1PgcdN=P
31 biorf ¬PgcdN=PPgcdN=1PgcdN=PPgcdN=1
32 orcom PgcdN=PPgcdN=1PgcdN=1PgcdN=P
33 31 32 bitrdi ¬PgcdN=PPgcdN=1PgcdN=1PgcdN=P
34 30 33 syl5ibrcom PN¬PgcdN=PPgcdN=1
35 7 34 syld PN¬PNPgcdN=1
36 iddvds PPP
37 1 36 syl PPP
38 37 adantr PNPP
39 dvdslegcd PPN¬P=0N=0PPPNPPgcdN
40 39 ex PPN¬P=0N=0PPPNPPgcdN
41 40 3anidm12 PN¬P=0N=0PPPNPPgcdN
42 1 41 sylan PN¬P=0N=0PPPNPPgcdN
43 14 42 mpd PNPPPNPPgcdN
44 38 43 mpand PNPNPPgcdN
45 prmgt1 P1<P
46 45 adantr PN1<P
47 1re 1
48 1 zred PP
49 18 nnred PNPgcdN
50 ltletr 1PPgcdN1<PPPgcdN1<PgcdN
51 47 48 49 50 mp3an2ani PN1<PPPgcdN1<PgcdN
52 46 51 mpand PNPPgcdN1<PgcdN
53 ltne 11<PgcdNPgcdN1
54 47 53 mpan 1<PgcdNPgcdN1
55 54 a1i PN1<PgcdNPgcdN1
56 44 52 55 3syld PNPNPgcdN1
57 56 necon2bd PNPgcdN=1¬PN
58 35 57 impbid PN¬PNPgcdN=1