Metamath Proof Explorer


Theorem cpncn

Description: A C^n function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpncn SFCnSNF:domFcn

Proof

Step Hyp Ref Expression
1 recnprss SS
2 1 adantr SFCnSNS
3 simpl SFCnSNS
4 0nn0 00
5 4 a1i SFCnSN00
6 elfvdm FCnSNNdomCnS
7 6 adantl SFCnSNNdomCnS
8 fncpn SCnSFn0
9 fndm CnSFn0domCnS=0
10 2 8 9 3syl SFCnSNdomCnS=0
11 7 10 eleqtrd SFCnSNN0
12 nn0uz 0=0
13 11 12 eleqtrdi SFCnSNN0
14 cpnord S00N0CnSNCnS0
15 3 5 13 14 syl3anc SFCnSNCnSNCnS0
16 simpr SFCnSNFCnSN
17 15 16 sseldd SFCnSNFCnS0
18 elcpn S00FCnS0F𝑝𝑚SSDnF0:domFcn
19 2 5 18 syl2anc SFCnSNFCnS0F𝑝𝑚SSDnF0:domFcn
20 17 19 mpbid SFCnSNF𝑝𝑚SSDnF0:domFcn
21 20 simpld SFCnSNF𝑝𝑚S
22 dvn0 SF𝑝𝑚SSDnF0=F
23 2 21 22 syl2anc SFCnSNSDnF0=F
24 20 simprd SFCnSNSDnF0:domFcn
25 23 24 eqeltrrd SFCnSNF:domFcn