Metamath Proof Explorer


Theorem crctcshwlkn0lem7

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s φS1..^N
crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
crctcshwlkn0lem.h H=FcyclShiftS
crctcshwlkn0lem.n N=F
crctcshwlkn0lem.f φFWordA
crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
crctcshwlkn0lem.e φPN=P0
Assertion crctcshwlkn0lem7 φj0..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s φS1..^N
2 crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
3 crctcshwlkn0lem.h H=FcyclShiftS
4 crctcshwlkn0lem.n N=F
5 crctcshwlkn0lem.f φFWordA
6 crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
7 crctcshwlkn0lem.e φPN=P0
8 1 2 3 4 5 6 crctcshwlkn0lem4 φj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHj
9 eqidd φNS=NS
10 1 2 3 4 5 6 7 crctcshwlkn0lem6 φNS=NSif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
11 9 10 mpdan φif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
12 ovex NSV
13 wkslem1 j=NSif-Qj=Qj+1IHj=QjQjQj+1IHjif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
14 12 13 ralsn jNSif-Qj=Qj+1IHj=QjQjQj+1IHjif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
15 11 14 sylibr φjNSif-Qj=Qj+1IHj=QjQjQj+1IHj
16 ralunb j0..^NSNSif-Qj=Qj+1IHj=QjQjQj+1IHjj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHjjNSif-Qj=Qj+1IHj=QjQjQj+1IHj
17 8 15 16 sylanbrc φj0..^NSNSif-Qj=Qj+1IHj=QjQjQj+1IHj
18 elfzo1 S1..^NSNS<N
19 nnz NN
20 nnz SS
21 zsubcl NSNS
22 19 20 21 syl2anr SNNS
23 22 3adant3 SNS<NNS
24 nnre SS
25 nnre NN
26 posdif SNS<N0<NS
27 0re 0
28 resubcl NSNS
29 28 ancoms SNNS
30 ltle 0NS0<NS0NS
31 27 29 30 sylancr SN0<NS0NS
32 26 31 sylbid SNS<N0NS
33 24 25 32 syl2an SNS<N0NS
34 33 3impia SNS<N0NS
35 elnn0z NS0NS0NS
36 23 34 35 sylanbrc SNS<NNS0
37 elnn0uz NS0NS0
38 36 37 sylib SNS<NNS0
39 fzosplitsn NS00..^N-S+1=0..^NSNS
40 38 39 syl SNS<N0..^N-S+1=0..^NSNS
41 18 40 sylbi S1..^N0..^N-S+1=0..^NSNS
42 1 41 syl φ0..^N-S+1=0..^NSNS
43 42 raleqdv φj0..^N-S+1if-Qj=Qj+1IHj=QjQjQj+1IHjj0..^NSNSif-Qj=Qj+1IHj=QjQjQj+1IHj
44 17 43 mpbird φj0..^N-S+1if-Qj=Qj+1IHj=QjQjQj+1IHj
45 1 2 3 4 5 6 crctcshwlkn0lem5 φjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj
46 ralunb j0..^N-S+1N-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHjj0..^N-S+1if-Qj=Qj+1IHj=QjQjQj+1IHjjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj
47 44 45 46 sylanbrc φj0..^N-S+1N-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj
48 nnsub SNS<NNS
49 48 biimp3a SNS<NNS
50 nnnn0 NSNS0
51 peano2nn0 NS0N-S+10
52 49 50 51 3syl SNS<NN-S+10
53 nnnn0 NN0
54 53 3ad2ant2 SNS<NN0
55 25 anim1i NSNS
56 55 ancoms SNNS
57 crctcshwlkn0lem1 NSN-S+1N
58 56 57 syl SNN-S+1N
59 58 3adant3 SNS<NN-S+1N
60 elfz2nn0 N-S+10NN-S+10N0N-S+1N
61 52 54 59 60 syl3anbrc SNS<NN-S+10N
62 18 61 sylbi S1..^NN-S+10N
63 fzosplit N-S+10N0..^N=0..^N-S+1N-S+1..^N
64 1 62 63 3syl φ0..^N=0..^N-S+1N-S+1..^N
65 64 raleqdv φj0..^Nif-Qj=Qj+1IHj=QjQjQj+1IHjj0..^N-S+1N-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj
66 47 65 mpbird φj0..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj