Metamath Proof Explorer


Theorem cshwcshid

Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym and erclwwlknsym . (Contributed by AV, 8-Apr-2018) (Revised by AV, 11-Jun-2018) (Proof shortened by AV, 3-Nov-2018)

Ref Expression
Hypotheses cshwcshid.1 φyWordV
cshwcshid.2 φx=y
Assertion cshwcshid φm0yx=ycyclShiftmn0xy=xcyclShiftn

Proof

Step Hyp Ref Expression
1 cshwcshid.1 φyWordV
2 cshwcshid.2 φx=y
3 fznn0sub2 m0yym0y
4 oveq2 x=y0x=0y
5 4 eleq2d x=yym0xym0y
6 3 5 imbitrrid x=ym0yym0x
7 6 2 syl11 m0yφym0x
8 7 adantr m0yx=ycyclShiftmφym0x
9 8 impcom φm0yx=ycyclShiftmym0x
10 simpl yWordVm0yyWordV
11 elfzelz m0ym
12 11 adantl yWordVm0ym
13 elfz2nn0 m0ym0y0my
14 nn0z y0y
15 nn0z m0m
16 zsubcl ymym
17 14 15 16 syl2anr m0y0ym
18 17 3adant3 m0y0myym
19 13 18 sylbi m0yym
20 19 adantl yWordVm0yym
21 10 12 20 3jca yWordVm0yyWordVmym
22 1 21 sylan φm0yyWordVmym
23 2cshw yWordVmymycyclShiftmcyclShiftym=ycyclShiftm+y-m
24 22 23 syl φm0yycyclShiftmcyclShiftym=ycyclShiftm+y-m
25 nn0cn m0m
26 nn0cn y0y
27 25 26 anim12i m0y0my
28 27 3adant3 m0y0mymy
29 13 28 sylbi m0ymy
30 pncan3 mym+y-m=y
31 29 30 syl m0ym+y-m=y
32 31 adantl φm0ym+y-m=y
33 32 oveq2d φm0yycyclShiftm+y-m=ycyclShifty
34 cshwn yWordVycyclShifty=y
35 1 34 syl φycyclShifty=y
36 35 adantr φm0yycyclShifty=y
37 24 33 36 3eqtrrd φm0yy=ycyclShiftmcyclShiftym
38 37 adantrr φm0yx=ycyclShiftmy=ycyclShiftmcyclShiftym
39 oveq1 x=ycyclShiftmxcyclShiftym=ycyclShiftmcyclShiftym
40 39 eqeq2d x=ycyclShiftmy=xcyclShiftymy=ycyclShiftmcyclShiftym
41 40 adantl m0yx=ycyclShiftmy=xcyclShiftymy=ycyclShiftmcyclShiftym
42 41 adantl φm0yx=ycyclShiftmy=xcyclShiftymy=ycyclShiftmcyclShiftym
43 38 42 mpbird φm0yx=ycyclShiftmy=xcyclShiftym
44 oveq2 n=ymxcyclShiftn=xcyclShiftym
45 44 rspceeqv ym0xy=xcyclShiftymn0xy=xcyclShiftn
46 9 43 45 syl2anc φm0yx=ycyclShiftmn0xy=xcyclShiftn
47 46 ex φm0yx=ycyclShiftmn0xy=xcyclShiftn