Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym and erclwwlknsym . (Contributed by AV, 8-Apr-2018) (Revised by AV, 11-Jun-2018) (Proof shortened by AV, 3-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cshwcshid.1 | |
|
cshwcshid.2 | |
||
Assertion | cshwcshid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwcshid.1 | |
|
2 | cshwcshid.2 | |
|
3 | fznn0sub2 | |
|
4 | oveq2 | |
|
5 | 4 | eleq2d | |
6 | 3 5 | imbitrrid | |
7 | 6 2 | syl11 | |
8 | 7 | adantr | |
9 | 8 | impcom | |
10 | simpl | |
|
11 | elfzelz | |
|
12 | 11 | adantl | |
13 | elfz2nn0 | |
|
14 | nn0z | |
|
15 | nn0z | |
|
16 | zsubcl | |
|
17 | 14 15 16 | syl2anr | |
18 | 17 | 3adant3 | |
19 | 13 18 | sylbi | |
20 | 19 | adantl | |
21 | 10 12 20 | 3jca | |
22 | 1 21 | sylan | |
23 | 2cshw | |
|
24 | 22 23 | syl | |
25 | nn0cn | |
|
26 | nn0cn | |
|
27 | 25 26 | anim12i | |
28 | 27 | 3adant3 | |
29 | 13 28 | sylbi | |
30 | pncan3 | |
|
31 | 29 30 | syl | |
32 | 31 | adantl | |
33 | 32 | oveq2d | |
34 | cshwn | |
|
35 | 1 34 | syl | |
36 | 35 | adantr | |
37 | 24 33 36 | 3eqtrrd | |
38 | 37 | adantrr | |
39 | oveq1 | |
|
40 | 39 | eqeq2d | |
41 | 40 | adantl | |
42 | 41 | adantl | |
43 | 38 42 | mpbird | |
44 | oveq2 | |
|
45 | 44 | rspceeqv | |
46 | 9 43 45 | syl2anc | |
47 | 46 | ex | |